枚举 B. Lorry
Problem - B - Codeforces
题目大意:给物品数量 n n n,体积为 v ( 0 ≤ v ≤ 1 e 9 ) v_{(0 \le v \le 1e9)} v(0≤v≤1e9),第一行读入 n , v n, v n,v,之后 n n n行,读入 n n n个物品,之后每行依次是体积和价值,其中体积要么是1要么是2。要求输出价值和最大,且依次输出所选物品的编号。
思路:发现,体积 v v v很大,用01背包一定不行,01背包优化的事件复杂度是 O ( v ) O(v) O(v),也过不去。但是发现物品的体积要么是1要么是2。我们可以将物品按其体积分为两类,分别表示体积为1的物品和体积为2的物品。之后对于相同体积的物品来说,我们优先考虑其价值最大的那个,所以要对物品进行排序。之后枚举物品体积为1的数量 i i i,得到在物品体积为1的数量 i i i的条件下,得到的最大值,不断的进行更新即可。
代码如下:
void solve() {int n,V; cin>>n>>V;// [0, 0] -> 物品价值,物品编号vector<array<int,2>> t1, t2;t1.push_back({0, 0});t2.push_back({0, 0});for(int i = 0; i < n; ++i) {int v, w; cin>>v>>w;if(v == 1) t1.push_back({w, i + 1});else t2.push_back({w, i + 1});}// 得到物品体积为1的数量,和2的数量int len1 = t1.size() - 1, len2 = t2.size() - 1;// 对物品按照价值从大到小进行排序sort(t1.begin() + 1, t1.end(), [&](auto pre, auto suf) {return pre[0] > suf[0];});sort(t2.begin() + 1, t2.end(), [&](auto pre, auto suf) {return pre[0] > suf[0];});// 得到体积为2的物品的前缀和vector<int> pre(len2 + 1);for(int i = 1; i <= len2; ++i) {pre[i] = pre[i - 1] + t2[i][0];}// 最大值,当前体积为1的物品之和int ma = 0, sum = 0;// 最大值时体积为的个数和体积为2的个数int ans1 = 0, ans2 = 0;// 枚举体积为1的数量,得到最大值for(int i = 0; i <= len1; ++i) {if(i > V) break;int j = min( (V - i) / 2, len2);sum += t1[i][0];if(sum + pre[j] > ma) {ma = sum + pre[j];ans1 = i; ans2 = j;}}// 输出即可cout<<ma<<'\n';for(int i = 1; i <= ans1; ++i) cout<<t1[i][1]<<' ';for(int i = 1; i <= ans2; ++i) cout<<t2[i][1]<<' ';
}
刚开始写的时候,发现定义比较麻烦,就用了map进行映射,发现要处理边界问题,还不如上面简介呢(
void solve() {int n,v; cin>>n>>v;map<int, vector<array<int,2>> > mp;for(int i = 0; i < n; ++i) {int v,w; cin>>v>>w;mp[v].push_back({w, i + 1});}for(int i = 1; i < 3; ++i) {sort(all(mp[i]), [&](auto pre, auto suf) {return pre[0] > suf[0];});}int vlen2 = mp[2].size();vector<int> pre(vlen2 + 1);auto v2(mp[2]);for(int i = 0; i < vlen2; ++i) {pre[i + 1] = pre[i] + v2[i][0];}int sum = 0, ma = 0, need1 = 0, need2 = 0;auto v1(mp[1]);int vlen1 = n - vlen2;ma = pre[min(v / 2, vlen2)]; need2 = min(v / 2, vlen2);for(int i = 1; i <= vlen1; ++i) {if(i > v) break;sum += v1[i-1][0];int j = min( (v - i) / 2, vlen2);if(sum + pre[j] > ma) {ma = sum + pre[j];need1 = i; need2 = j;}}cout<<ma<<'\n';for(int i = 0; i < need1; ++i) {cout<<v1[i][1]<<' ';}for(int i = 0; i < need2; ++i) {cout<<v2[i][1]<<' ';}
}
相关文章:
枚举 B. Lorry
Problem - B - Codeforces 题目大意:给物品数量 n n n,体积为 v ( 0 ≤ v ≤ 1 e 9 ) v_{(0 \le v \le 1e9)} v(0≤v≤1e9),第一行读入 n , v n, v n,v,之后 n n n行,读入 n n n个物品,之后每行依次是体…...

ON1 Photo RAW 2024 for Mac——专业照片编辑的终极利器
ON1 Photo RAW 2024 for Mac是一款专为Mac用户打造的照片编辑器,以其强大的功能和易用的操作,让你的照片编辑工作变得轻松愉快。 一、强大的RAW处理能力 ON1 Photo RAW 2024支持大量的RAW格式照片,能够让你在编辑过程中获得更多的自由度和更…...
从word复制内容到wangEditor富文本框的时候会把html标签也复制过来,如果只想实现直接复制纯文本,有什么好的实现方式
从word复制内容到wangEditor富文本框的时候会把html标签也复制过来,如果只想实现直接复制纯文本,有什么好的实现方式? 将 Word 中的内容复制到富文本编辑器时,常常会带有大量的 HTML 标签和样式,这可能导致不必要的格式…...

项目中如何配置数据可视化展现
在现今数据驱动的时代,可视化已逐渐成为数据分析的主要途径,可视化大屏的广泛使用便应运而生。很多公司及政务机构,常利用大屏的手段展现其实力或演示业务,可视化的效果能让观者更快速的理解结果并直观的看到数据展现。因此&#…...

ArkUI开发进阶—@Builder函数@BuilderParam装饰器的妙用与场景应用
ArkUI开发进阶—@Builder函数@BuilderParam装饰器的妙用与场景应用 HarmonyOS,作为一款全场景分布式操作系统,为了推动更广泛的应用开发,采用了一种先进而灵活的编程语言——ArkTS。ArkTS是在TypeScript(TS)的基础上发展而来,为HarmonyOS提供了丰富的应用开发工具,使开…...

大语言模型概述(三):基于亚马逊云科技的研究分析与实践
上期介绍了基于亚马逊云科技的大语言模型相关研究方向,以及大语言模型的训练和构建优化。本期将介绍大语言模型训练在亚马逊云科技上的最佳实践。 大语言模型训练在亚马逊云科技上的最佳实践 本章节内容,将重点关注大语言模型在亚马逊云科技上的最佳训…...

键入网址到网页显示,期间发生了什么?
文章目录 键入网址到网页显示,期间发生了什么?1. HTTP2. 真实地址查询 —— DNS3. 指南好帮手 —— 协议栈4. 可靠传输 —— TCP5. 远程定位 —— IP6. 两点传输 —— MAC7. 出口 —— 网卡8. 送别者 —— 交换机9. 出境大门 —— 路由器10. 互相扒皮 —…...

深度学习基于Python+TensorFlow+Django的水果识别系统
欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。 文章目录 一项目简介简介技术组合系统功能使用流程 二、功能三、系统四. 总结 一项目简介 # 深度学习基于PythonTensorFlowDjango的水果识别系统介绍 简介 该水果识别系统基于…...
vs动态库生成过程中还存在静态库
为什么VS生成动态库dll同时还会生成lib静态库 动态库与静态库(Windows环境下) 动态库和静态库都是一种可执行代码的二进制形式,可以被操作系统载入内存执行。 静态库实际上是在链接时被链接到exe的,编译后,静态…...

P13 C++ 类 | 结构体内部的静态static
目录 01 前言 02 类内部创建静态变量的例子 03 在类的内部创建静态变量的作用 04 最后的话 01 前言 本期我们讨论 static 在一个类或一个结构体中的具体情况。 在几乎所有面向对象的语言中,静态在一个类中意味着特定的东西。这意味着在类的所有实例中ÿ…...

【腾讯云云上实验室-向量数据库】Tencent Cloud VectorDB在实战项目中替换Milvus测试
为什么尝试使用Tencent Cloud VectorDB替换Milvus向量库? 亮点:Tencent Cloud VectorDB支持Embedding,免去自己搭建模型的负担(搭建一个生产环境的模型实在耗费精力和体力)。 腾讯云向量数据库是什么? 腾…...

git clone -mirror 和 git clone 的区别
目录 前言两则区别git clone --mirrorgit clone 获取到的文件有什么不同瘦身仓库如何选择结语开源项目 前言 Git是一款强大的版本控制系统,通过Git可以方便地管理代码的版本和协作开发。在使用Git时,常见的操作之一就是通过git clone命令将远程仓库克隆…...

基于51单片机的公交自动报站系统
**单片机设计介绍, 基于51单片机的公交自动报站系统 文章目录 一 概要公交自动报站系统概述工作原理应用与优势 二、功能设计设计思路 三、 软件设计原理图 五、 程序六、 文章目录 一 概要 很高兴为您介绍基于51单片机的公交自动报站系统: 公交自动报…...
NextJS开发:Image组件的使用及缺陷
Next.js 中的 Image 组件相比于传统的 img 标签有以下几个优点: 懒加载:Image 组件自带懒加载,当页面滚动到 Image 组件所在位置时才会加载图片,从而加快页面的渲染速度。自动优化:Image 组件会自动将图片压缩、转换格…...
网络安全面试经历
2023-11-22 X亭安全服务实习生面试 一面: 工作方向:偏蓝队 总结:实习蓝队面试没有什么难度,没有什么技术上的细节问题,之前准备的细节问题没有考 最后和面试官聊了聊对网安的认识,聊了聊二进制的知识…...
Rust语言入门教程(四) - 数据类型
标量类型(Scalar Types) 在Rust中,一共有4中标量类型, 也就是基本数据类型,分别是: 整型(Integers)浮点型(Floats)布尔型(Boolean)字符型(Chara…...

华为云人工智能入门级开发者认证学习笔记
人工智能入门级开发者认证 人工智能定义 定义 人工智能 (Artificial Intelligence) 是研究、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 强人工智能 vs 弱人工智能 强人工智能:强人工智能观点认为有可能制造出真正能推理(…...

腾讯云发布新一代基于AMD处理器的星星海云服务器实例SA5
基础设施的硬实力,愈发成为云厂商的核心竞争力。 11月24日,腾讯云发布了全新一代星星海服务器。基于自研服务器的高密设计与硬件升级,对应云服务器SA5是全球首家搭载第四代AMD EPYC处理器(Bergamo)的公有云实例&#…...
算法通关村-----数论问题解析
最大公约数和最小公倍数 概念描述 最大公约数(GCD)是指两个或多个整数共有约数中的最大值。 最小公倍数(LCM)是指两个或多个整数共有的倍数中的最小值 方法介绍 碾转相除法 一种用于计算两个整数的最大公约数(GCD…...
wpf prism当中 发布订阅 IEventAggregator
先订阅后发布 private readonly IEventAggregator _eventAggregator; public LoginViewModel(ILoginService iloginService, IEventAggregator eventAggregator) {_iloginService iloginService;_eventAggregator eventAggregator;_eventAggregator.GetEvent<MessageEven…...

Flask RESTful 示例
目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题: 下面创建一个简单的Flask RESTful API示例。首先,我们需要创建环境,安装必要的依赖,然后…...
椭圆曲线密码学(ECC)
一、ECC算法概述 椭圆曲线密码学(Elliptic Curve Cryptography)是基于椭圆曲线数学理论的公钥密码系统,由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA,ECC在相同安全强度下密钥更短(256位ECC ≈ 3072位RSA…...

Day131 | 灵神 | 回溯算法 | 子集型 子集
Day131 | 灵神 | 回溯算法 | 子集型 子集 78.子集 78. 子集 - 力扣(LeetCode) 思路: 笔者写过很多次这道题了,不想写题解了,大家看灵神讲解吧 回溯算法套路①子集型回溯【基础算法精讲 14】_哔哩哔哩_bilibili 完…...

Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)
引言:为什么 Eureka 依然是存量系统的核心? 尽管 Nacos 等新注册中心崛起,但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制,是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...

SpringTask-03.入门案例
一.入门案例 启动类: package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...
Element Plus 表单(el-form)中关于正整数输入的校验规则
目录 1 单个正整数输入1.1 模板1.2 校验规则 2 两个正整数输入(联动)2.1 模板2.2 校验规则2.3 CSS 1 单个正整数输入 1.1 模板 <el-formref"formRef":model"formData":rules"formRules"label-width"150px"…...

HashMap中的put方法执行流程(流程图)
1 put操作整体流程 HashMap 的 put 操作是其最核心的功能之一。在 JDK 1.8 及以后版本中,其主要逻辑封装在 putVal 这个内部方法中。整个过程大致如下: 初始判断与哈希计算: 首先,putVal 方法会检查当前的 table(也就…...

sipsak:SIP瑞士军刀!全参数详细教程!Kali Linux教程!
简介 sipsak 是一个面向会话初始协议 (SIP) 应用程序开发人员和管理员的小型命令行工具。它可以用于对 SIP 应用程序和设备进行一些简单的测试。 sipsak 是一款 SIP 压力和诊断实用程序。它通过 sip-uri 向服务器发送 SIP 请求,并检查收到的响应。它以以下模式之一…...
AGain DB和倍数增益的关系
我在设置一款索尼CMOS芯片时,Again增益0db变化为6DB,画面的变化只有2倍DN的增益,比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析: 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...

Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战
说明:这是一个机器学习实战项目(附带数据代码文档),如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下,风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...