当前位置: 首页 > news >正文

开源大模型框架llama.cpp使用C++ api开发入门

llama.cpp是一个C++编写的轻量级开源类AIGC大模型框架,可以支持在消费级普通设备上本地部署运行大模型,以及作为依赖库集成的到应用程序中提供类GPT的功能。

以下基于llama.cpp的源码利用C++ api来开发实例demo演示加载本地模型文件并提供GPT文本生成。

项目结构

llamacpp_starter- llama.cpp-b1547- src|- main.cpp- CMakeLists.txt

CMakeLists.txt

cmake_minimum_required(VERSION 3.15)# this only works for unix, xapian source code not support compile in windows yetproject(llamacpp_starter)set(CMAKE_CXX_STANDARD 14)
set(CMAKE_CXX_STANDARD_REQUIRED ON)add_subdirectory(llama.cpp-b1547)include_directories(${CMAKE_CURRENT_SOURCE_DIR}/llama.cpp-b1547${CMAKE_CURRENT_SOURCE_DIR}/llama.cpp-b1547/common
)file(GLOB SRCsrc/*.hsrc/*.cpp
)add_executable(${PROJECT_NAME} ${SRC})target_link_libraries(${PROJECT_NAME}commonllama
)

main.cpp

#include <iostream>
#include <string>
#include <vector>
#include "common.h"
#include "llama.h"int main(int argc, char** argv)
{bool numa_support = false;const std::string model_file_path = "./llama-ggml.gguf";const std::string prompt = "once upon a time"; // input wordsconst int n_len = 32; 	// total length of the sequence including the prompt// set gpt paramsgpt_params params;params.model = model_file_path;params.prompt = prompt;// init LLMllama_backend_init(false);// load modelllama_model_params model_params = llama_model_default_params();//model_params.n_gpu_layers = 99; // offload all layers to the GPUllama_model* model = llama_load_model_from_file(model_file_path.c_str(), model_params);if (model == NULL){std::cerr << __func__ << " load model file error" << std::endl;return 1;}// init contextllama_context_params ctx_params = llama_context_default_params();ctx_params.seed = 1234;ctx_params.n_ctx = 2048;ctx_params.n_threads = params.n_threads;ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;llama_context* ctx = llama_new_context_with_model(model, ctx_params);if (ctx == NULL){std::cerr << __func__ << " failed to create the llama_context" << std::endl;return 1;}// tokenize the promptstd::vector<llama_token> tokens_list = llama_tokenize(ctx, params.prompt, true);const int n_ctx = llama_n_ctx(ctx);const int n_kv_req = tokens_list.size() + (n_len - tokens_list.size());// make sure the KV cache is big enough to hold all the prompt and generated tokensif (n_kv_req > n_ctx){std::cerr << __func__ << " error: n_kv_req > n_ctx, the required KV cache size is not big enough" << std::endl;std::cerr << __func__ << " either reduce n_parallel or increase n_ctx" << std::endl;return 1;}// print the prompt token-by-tokenfor (auto id : tokens_list)std::cout << llama_token_to_piece(ctx, id) << " ";std::cout << std::endl;// create a llama_batch with size 512// we use this object to submit token data for decodingllama_batch batch = llama_batch_init(512, 0, 1);// evaluate the initial promptfor (size_t i = 0; i < tokens_list.size(); i++)llama_batch_add(batch, tokens_list[i], i, { 0 }, false);// llama_decode will output logits only for the last token of the promptbatch.logits[batch.n_tokens - 1] = true;if (llama_decode(ctx, batch) != 0){std::cerr << __func__ << " llama_decode failed" << std::endl;return 1;}// main loop to generate wordsint n_cur = batch.n_tokens;int n_decode = 0;const auto t_main_start = ggml_time_us();while (n_cur <= n_len){// sample the next tokenauto n_vocab = llama_n_vocab(model);auto* logits = llama_get_logits_ith(ctx, batch.n_tokens - 1);std::vector<llama_token_data> candidates;candidates.reserve(n_vocab);for (llama_token token_id = 0; token_id < n_vocab; token_id++){candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f });}llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };// sample the most likely tokenconst llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);// is it an end of stream?if (new_token_id == llama_token_eos(model) || n_cur == n_len){std::cout << std::endl;break;}std::cout << llama_token_to_piece(ctx, new_token_id) << " ";// prepare the next batchllama_batch_clear(batch);// push this new token for next evaluationllama_batch_add(batch, new_token_id, n_cur, { 0 }, true);n_decode += 1;n_cur += 1;// evaluate the current batch with the transformer modelif (llama_decode(ctx, batch)){std::cerr << __func__ << " failed to eval" << std::endl;return 1;}}std::cout << std::endl;const auto t_main_end = ggml_time_us();std::cout << __func__ << " decoded " << n_decode << " tokens in " << (t_main_end - t_main_start) / 1000000.0f << " s, speed: " << n_decode / ((t_main_end - t_main_start) / 1000000.0f) << " t / s" << std::endl;llama_print_timings(ctx);llama_batch_free(batch);// free contextllama_free(ctx);llama_free_model(model);// free LLMllama_backend_free();return 0;
}

注:

  • llama支持的模型文件需要自己去下载,推荐到huggingface官网下载转换好的gguf格式文件
  • llama.cpp编译可以配置多种类型的增强选项,比如支持CPU/GPU加速,数据计算加速库

源码

llamacpp_starter

本文由博客一文多发平台 OpenWrite 发布!

相关文章:

开源大模型框架llama.cpp使用C++ api开发入门

llama.cpp是一个C编写的轻量级开源类AIGC大模型框架&#xff0c;可以支持在消费级普通设备上本地部署运行大模型&#xff0c;以及作为依赖库集成的到应用程序中提供类GPT的功能。 以下基于llama.cpp的源码利用C api来开发实例demo演示加载本地模型文件并提供GPT文本生成。 项…...

Qt 网络通信

获取本机网络信息 &#xff08;1&#xff09;在 .pro 文件中加入 QT network&#xff08;2&#xff09; #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QDebug> #include <QLabel> #include <QLineEdit> #include <QPu…...

基恩士软件的基本操作(五,日志记录与使用)

目录 基恩士是如何保存日志的&#xff1f; 如何使用日志功能 查看DM10的值1秒加1的记录日志 设定id与储存位置 软元件设定&#xff08; 日志ID有10个&#xff08;0~10&#xff09;&#xff0c;每一个ID最多添加512个软元件&#xff09; 设定触发 执行日志的梯形图程序 触…...

MySQL 8 手动安装后无法启动的问题解决

开头还是介绍一下群&#xff0c;如果感兴趣PolarDB ,MongoDB ,MySQL ,PostgreSQL ,Redis, Oceanbase, Sql Server等有问题&#xff0c;有需求都可以加群群内有各大数据库行业大咖&#xff0c;CTO&#xff0c;可以解决你的问题。加群请联系 liuaustin3 &#xff0c;&#xff08;…...

难怪被人卷了不知道啊!这么学自动化测试,一个星期就搞定了!!!

目前自动化测试并不属于新鲜的事物&#xff0c;或者说自动化测试的各种方法论已经层出不穷&#xff0c;但是&#xff0c;能够明白自动化测试并很好落地实施的团队还不是非常多&#xff0c;我们接来下用通俗的方式来介绍自动化测试…… 首先我们从招聘岗位需求说起。看近期的职…...

每日OJ题_算法_双指针⑦力扣15. 三数之和

目录 力扣15. 三数之和 解析代码 力扣15. 三数之和 难度 中等 给你一个整数数组 nums &#xff0c;判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i ! j、i ! k 且 j ! k &#xff0c;同时还满足 nums[i] nums[j] nums[k] 0 。请 你返回所有和为 0 且不重复的三…...

【计算机网络学习之路】日志和守护进程

文章目录 前言一. 日志介绍二. 简单日志1. 左字符串2. 右字符串 三. 守护进程1. ps -axj命令2. 会话扩展命令 3. 创建守护进程 结束语 前言 本系列文章是计算机网络学习的笔记&#xff0c;欢迎大佬们阅读&#xff0c;纠错&#xff0c;分享相关知识。希望可以与你共同进步。 本…...

foobar2000 突然无法正常输出DSD信号

之前一直在用foobar2000加外置dac听音乐&#xff0c;有一天突然发现听dsd的时候&#xff0c;dac面板显示输出的是PCM格式信号&#xff0c;而不是DSD信号&#xff0c;这让我觉得很奇怪&#xff0c;反复折腾了几次&#xff0c;卸载安装驱动什么的&#xff0c;依然如此&#xff0c…...

鸿蒙HarmonyOS 编辑器 下载 安装

好 各位 之前的文章 注册并实名认证华为开发者账号 我们基实名注册了华为的开发者账号 我们可以访问官网 https://developer.harmonyos.com/cn/develop/deveco-studio 在这里 直接就有我们编辑器的下载按钮 我们直接点击立即下载 这里 我们根据自己的系统选择要下载的系统 例…...

机器学习第13天:模型性能评估指标

☁️主页 Nowl &#x1f525;专栏《机器学习实战》 《机器学习》 &#x1f4d1;君子坐而论道&#xff0c;少年起而行之 文章目录 交叉验证 保留交叉验证 k-折交叉验证 留一交叉验证 混淆矩阵 精度与召回率 介绍 精度 召回率 区别 使用代码 偏差与方差 介绍 区…...

Elasticsearch基础优化

分片策略 分片和副本得设计为ES提供支付分布式和故障转移得特性&#xff0c;但不意味着分片和副本是可以无限分配&#xff0c; 而且索引得分片完成分配后由于索引得路由机制&#xff0c;不能重新修改分片数&#xff08;副本数可以动态修改&#xff09; 一个分片得底层为一个l…...

【Amazon】通过直接连接的方式导入 KubeSphere集群至KubeSphere主容器平台

文章目录 一、设置主集群方式一&#xff1a;使用 Web 控制台方式二&#xff1a;使用 Kubectl命令 二、在主集群中设置代理服务地址方式一&#xff1a;使用 Web 控制台方式二&#xff1a;使用 Kubectl命令 三、登录控制台验证四、准备成员集群方式一&#xff1a;使用 Web 控制台…...

三数之和问题

给你一个整数数组 nums &#xff0c;判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i ! j、i ! k 且 j ! k &#xff0c;同时还满足 nums[i] nums[j] nums[k] 0 。请 你返回所有和为 0 且不重复的三元组。 注意&#xff1a;答案中不可以包含重复的三元组。 示例 1&…...

【JavaEE】多线程 (2) --线程安全

目录 1. 观察线程不安全 2. 线程安全的概念 3. 线程不安全的原因 4. 解决之前的线程不安全问题 5. synchronized 关键字 - 监视器锁 monitor lock 5.1 synchronized 的特性 5.2 synchronized 使⽤⽰例 1. 观察线程不安全 package thread; public class ThreadDemo19 {p…...

关于点胶机那些事

总结一下点胶机技术要点&#xff1a; 1&#xff1a;不论多复杂的点胶机&#xff0c;简单点&#xff0c;可以简化为&#xff1a;1&#xff1a;运控 2&#xff1a;点胶&#xff0c;3&#xff1a;检测 运控的目的就是负责把针头移到面板对应的胶路上&#xff0c;点胶即就是排胶&…...

Python | CAP - 累积精度曲线分析案例

CAP通常被称为“累积精度曲线”&#xff0c;用于分类模型的性能评估。它有助于我们理解和总结分类模型的鲁棒性。为了直观地显示这一点&#xff0c;我们在图中绘制了三条不同的曲线&#xff1a; 一个随机的曲线&#xff08;random&#xff09;通过使用随机森林分类器获得的曲线…...

ubuntu22.04安装swagboot遇到的问题

一、基本情况 系统&#xff1a;u 22.04 python&#xff1a; 3.10 二、问题描述 swagboot官方提供的安装路径言简意赅:python3 -m pip install --user snagboot 当然安装python3和pip是基本常识&#xff0c;这里就不再赘述。 可是在安装的时候出现如下提示说 Failed buildin…...

python每日一题——8无重复字符的最长子串

题目 给定一个字符串 s &#xff0c;请你找出其中不含有重复字符的 最长子串 的长度。 示例 1: 输入: s “abcabcbb” 输出: 3 解释: 因为无重复字符的最长子串是 “abc”&#xff0c;所以其长度为 3。 示例 2: 输入: s “bbbbb” 输出: 1 解释: 因为无重复字符的最长子串…...

【数据中台】开源项目(2)-Dbus数据总线

1 背景 企业中大量业务数据保存在各个业务系统数据库中&#xff0c;过去通常的同步数据的方法有很多种&#xff0c;比如&#xff1a; 各个数据使用方在业务低峰期各种抽取所需数据&#xff08;缺点是存在重复抽取而且数据不一致&#xff09; 由统一的数仓平台通过sqoop到各个…...

职场快速赢得信任

俗话说的好&#xff0c;有人的地方就有江湖。 国内不管是外企、私企、国企&#xff0c;职场环境都是变换莫测。 这里主要分享下怎么在职场中快速赢取信任。 1、找到让自己全面发展的方法 要知道&#xff0c;职场中话题是与他人交流的纽带&#xff0c;为了找到共同的话题&am…...

OpenLayers 可视化之热力图

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 热力图&#xff08;Heatmap&#xff09;又叫热点图&#xff0c;是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...

Linux链表操作全解析

Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表&#xff1f;1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...

从WWDC看苹果产品发展的规律

WWDC 是苹果公司一年一度面向全球开发者的盛会&#xff0c;其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具&#xff0c;对过去十年 WWDC 主题演讲内容进行了系统化分析&#xff0c;形成了这份…...

8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂

蛋白质结合剂&#xff08;如抗体、抑制肽&#xff09;在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上&#xff0c;高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术&#xff0c;但这类方法普遍面临资源消耗巨大、研发周期冗长…...

基于服务器使用 apt 安装、配置 Nginx

&#x1f9fe; 一、查看可安装的 Nginx 版本 首先&#xff0c;你可以运行以下命令查看可用版本&#xff1a; apt-cache madison nginx-core输出示例&#xff1a; nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...

ESP32 I2S音频总线学习笔记(四): INMP441采集音频并实时播放

简介 前面两期文章我们介绍了I2S的读取和写入&#xff0c;一个是通过INMP441麦克风模块采集音频&#xff0c;一个是通过PCM5102A模块播放音频&#xff0c;那如果我们将两者结合起来&#xff0c;将麦克风采集到的音频通过PCM5102A播放&#xff0c;是不是就可以做一个扩音器了呢…...

css的定位(position)详解:相对定位 绝对定位 固定定位

在 CSS 中&#xff0c;元素的定位通过 position 属性控制&#xff0c;共有 5 种定位模式&#xff1a;static&#xff08;静态定位&#xff09;、relative&#xff08;相对定位&#xff09;、absolute&#xff08;绝对定位&#xff09;、fixed&#xff08;固定定位&#xff09;和…...

SQL慢可能是触发了ring buffer

简介 最近在进行 postgresql 性能排查的时候,发现 PG 在某一个时间并行执行的 SQL 变得特别慢。最后通过监控监观察到并行发起得时间 buffers_alloc 就急速上升,且低水位伴随在整个慢 SQL,一直是 buferIO 的等待事件,此时也没有其他会话的争抢。SQL 虽然不是高效 SQL ,但…...

MacOS下Homebrew国内镜像加速指南(2025最新国内镜像加速)

macos brew国内镜像加速方法 brew install 加速formula.jws.json下载慢加速 &#x1f37a; 最新版brew安装慢到怀疑人生&#xff1f;别怕&#xff0c;教你轻松起飞&#xff01; 最近Homebrew更新至最新版&#xff0c;每次执行 brew 命令时都会自动从官方地址 https://formulae.…...

django blank 与 null的区别

1.blank blank控制表单验证时是否允许字段为空 2.null null控制数据库层面是否为空 但是&#xff0c;要注意以下几点&#xff1a; Django的表单验证与null无关&#xff1a;null参数控制的是数据库层面字段是否可以为NULL&#xff0c;而blank参数控制的是Django表单验证时字…...