机器学习-激活函数的直观理解
机器学习-激活函数的直观理解
在机器学习中,激活函数(Activation Function)是用于引入非线性特性的一种函数,它在神经网络的每个神经元上被应用。
如果不使用任何的激活函数,那么神经元的响应就是wx+b,相当于线性的。由此,任意数量的线性激活的神经元叠加,其功能和单个线性激活的神经元一致(线性叠加后仍然是线性的)。
1、几种常用的激活函数
线性激活函数:也相当于没有激活函数,其作用相当于线性叠加:
Sigmoid函数:Sigmoid函数是一个典型的逻辑函数,它会将任何实数映射到0到1之间。然而,它在输入值非常大或非常小的时候,会出现梯度消失的问题。f(x) = 1 / (1 + e^(-x))
Tanh函数:Tanh函数与Sigmoid函数非常相似,它会将任何实数映射到-1到1之间。和Sigmoid函数一样,它也存在梯度消失的问题。Tanh函数相对于原点对称,在处理某些具有对称性的问题时,Tanh可能会比Sigmoid更有优势。f(x) = (e^x - e^(-x)) / (e^x + e^(-x))
ReLU函数:ReLU(Rectified Linear Unit)是一种常用的激活函数,它对负数输出0,对正数则直接输出该数值。由于其简单性和在多层神经网络中的表现,ReLU在很多深度学习模型中得到了应用。但是它可能会在训练过程中出现神经元“死亡”的情况。f(x) = max(0, x)
死亡:当神经网络的权重更新导致神经元的输入变为负值,由于ReLU函数的特性,其输出将会为0,并且在后续的训练中,该神经元的输出将一直保持为0,因此某些神经元会不起作用。
Leaky ReLU:为了解决ReLU的“死亡”神经元问题,人们提出了Leaky ReLU激活函数。Leaky ReLU允许负数的小斜率,这样即使输入是负数,神经元也不会完全失效。在x小于0时有一个极小的负斜率。
Softmax函数:Softmax函数常用于多分类神经网络的输出层,因为它可以给出输入数据属于每个类别的概率。
Swish函数:Swish是一种自门控激活函数,它在深度学习模型中表现出了优于ReLU的性能。Swish函数的形状介于ReLU和Sigmoid之间。f(x) = x * sigmoid(βx)
2、激活函数的直观理解
让我们来拟合一个函数,其目标如下所示:
使用两层网络进行建模,其中第一层包含两个神经元(激活函数如下待定),第二层包含一个线性激活的神经元。
线性激活函数:首先使用线性激活函数作为第一层两个神经元的激活函数,训练得出的最终结果如下所示,由此可见多个线性激活神经元等效于一个神经元,因为最终得到的还是线性函数:
ReLU函数:其次使用ReLU函数作为第一层两个神经元的激活函数,在理想的情况下会得到如下的拟合结果,相当于是两个ReLU函数的组合,一个是直接向左平移,一个是翻转后平移:
但是ReLU在训练时可能会出现神经元死亡现象(上面解释过了),此时继续迭代也不会给性能带来提升(相当于陷入局部最优了),如:
由此可见,激活函数就是拟合的最小单元。
Leaky ReLU:使用Leaky ReLU可以避免ReLU在训练时导致的死亡现象,每次训练都能得到满意的结果:
Sigmoid函数:Sigmoid函数在此处实际上更有优势,因为其实际上就是一个连续的曲线(Tanh同理):
总结:激活函数就是拟合最终结果的最小单元,最终结果就是激活函数的平移反转或多次计算。上面的例子第二层是线性激活,因此最终结果相当于是第一层结果的线性叠加
3、结论分析
总结:激活函数就是拟合最终结果的最小单元,最终结果就是激活函数的平移反转或多次计算。上面的例子第二层是线性激活,因此最终结果相当于是第一层结果的线性叠加
显然,如果将第一层的两个神经元改为1个,就只会使用一个激活函数去进行拟合,Sigmoid的案例如;
4、代码
# 引入相关的包
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from keras.models import Sequential
from keras.layers import Dense
import warnings
warnings.simplefilter(action='ignore', category=UserWarning)
# 创建要拟合的函数
X = np.linspace(0,2*np.pi, 100)
y = np.cos(X)+1
X=X.reshape(-1,1)
# 画图(可选)
fig,ax = plt.subplots(1,1, figsize=(4,3))
ax.plot(X,y)
plt.show()
# 构建模型
model = Sequential([# Dense(2, activation="linear", name = 'l1'),Dense(2, activation="sigmoid", name = 'l1'),# Dense(2, activation="tanh", name='l1'),# Dense(2, activation="relu", name='l1'),# Dense(2, activation="leaky_relu", name='l1'),# Dense(2, activation="swish", name='l1'),Dense(1, activation="linear", name = 'l2')]
)
model.compile(loss=tf.keras.losses.MeanSquaredError(),optimizer=tf.keras.optimizers.Adam(0.04),
)
model.fit(X,y,epochs=300
)
# 进行模型预测
yhat = model.predict(X)
fig,ax = plt.subplots(1,1, figsize=(4,4))
ax.plot(X,y)
ax.plot(X,yhat)
plt.show()
# 进行模型预测
l1 = model.get_layer('l1')
l2 = model.get_layer('l2')
l1.get_weights()
l2.get_weights()
相关文章:

机器学习-激活函数的直观理解
机器学习-激活函数的直观理解 在机器学习中,激活函数(Activation Function)是用于引入非线性特性的一种函数,它在神经网络的每个神经元上被应用。 如果不使用任何的激活函数,那么神经元的响应就是wxb,相当…...

Fedora 36 ARM 镜像源更换与软件安装
1、什么是Fedora Fedora Linux是较具知名度的Linux发行套件之一,由Fedora专案社群开发、红帽公司赞助,目标是建立一套新颖、多功能并且自由的作业系统。 Fedora是商业化的Red Hat Enterprise Linux发行版的上游原始码。 2、Fedora软件安装 64 位 .deb&a…...

多级缓存快速上手
哈喽~大家好,这篇来看看多级缓存。 🥇个人主页:个人主页 🥈 系列专栏:【微服务】 🥉与这篇相关的文章: JAVA进程和线程JAVA进程和线程-CSDN博客Http…...
初始React
<!DOCTYPE html> <html> <head> <meta charset"UTF-8" /> <title>React</title> </head> <body> 了解React <!-- React是一个用于构建web和原生态交互界面的库 相对于传统DOM开发优势:组件化开发…...

2.5 逆矩阵
一、逆矩阵的注释 假设 A A A 是一个方阵,其逆矩阵 A − 1 A^{-1} A−1 与它的大小相同, A − 1 A I A^{-1}AI A−1AI。 A A A 与 A − 1 A^{-1} A−1 会做相反的事情。它们的乘积是单位矩阵 —— 对向量无影响,所以 A − 1 A x x A^{…...

物流实时数仓:数仓搭建(ODS)
系列文章目录 物流实时数仓:采集通道搭建 物流实时数仓:数仓搭建 文章目录 系列文章目录前言一、IDEA环境准备1.pom.xml2.目录创建 二、代码编写1.log4j.properties2.CreateEnvUtil.java3.KafkaUtil.java4.OdsApp.java 三、代码测试总结 前言 现在我们…...
【ARM 嵌入式 编译 Makefile 系列 18 -- Makefile 中的 export 命令详细介绍】
文章目录 Makefile 中的 export 命令详细介绍Makefile 使用 export导出与未导出变量的区别示例:导出变量以供子 Makefile 使用 Makefile 中的 export 命令详细介绍 在 Makefile 中,export 命令用于将变量从 Makefile 导出到由 Makefile 启动的子进程的环…...

【opencv】计算机视觉:停车场车位实时识别
目录 目标 整体流程 背景 详细讲解 目标 我们想要在一个实时的停车场监控视频中,看看要有多少个车以及有多少个空缺车位。然后我们可以标记空的,然后来车之后,实时告诉应该停在那里最方便、最近!!!实现…...
播放器开发(三):FFmpeg与SDL环境配置
学习课题:逐步构建开发播放器【QT5 FFmpeg6 SDL2】 环境配置 我这边的是使用macOS;IDE用的是CLion;CMake构建,除了创建项目步骤、CMakeLists文件有区别之外的代码层面不会有太大区别。 配置上只添加一下CMakeLists中FFmpeg和SD…...

KubeVela核心控制器原理浅析
前言 在学习 KubeVela 的核心控制器之前,我们先简单了解一下 KubeVela 的相关知识。 KubeVela 本身是一个应用交付与管理控制平面,它架在 Kubernetes 集群、云平台等基础设施之上,通过开放应用模型来对组件、云服务、运维能力、交付工作流进…...

迎接“全全闪”时代 XSKY星辰天合发布星海架构和星飞产品
11 月 17 日消息,北京市星辰天合科技股份有限公司(简称:XSKY星辰天合)在北京首钢园举办了主题为“星星之火”的 XSKY 星海全闪架构暨星飞存储发布会。 (图注:XSKY星辰天合 CEO 胥昕) XSKY星辰天…...
[架构相关]基础架构设计原则
基础架构设计原则 文章目录 基础架构设计原则一、可用性(Availability)1.1、引入冗余1.2、负载均衡1.3、故障转移1.4、备份和恢复策略 二、可扩展性(Scalability)2.1 水平扩展2.2 垂直扩展2.3 弹性扩展 三、可靠性(Rel…...
测试在 Oracle 下直接 rm dbf 数据文件并重启数据库
创建一个新的表空间并创建新的用户,指定新表空间为新用户的默认表空间 create tablespace zzw datafile /oradata/cesdb/zzw01.dbf size 10m;zzw用户已经创建过,这里修改其默认表空间 alter user zzw quota unlimited on zzw; alter user zzw default …...

【开源】基于JAVA的计算机机房作业管理系统
项目编号: S 017 ,文末获取源码。 \color{red}{项目编号:S017,文末获取源码。} 项目编号:S017,文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 登录注册模块2.2 课程管理模块2.3 课…...
Ubuntu 配置静态 IP
Ubuntu 18 开始可以使用netplan配置网络。配置文件位于/etc/netplan/xxx.yaml中,netplan默认是使用NetworkManager来配置网卡信息的。 修改配置文件: 1、打开文件编辑:sudo vi 01-network-manager-all.yaml原文件内容如下:netwo…...

Spring Cloud实战 |分布式系统的流量控制、熔断降级组件Sentinel如何使用
专栏集锦,大佬们可以收藏以备不时之需 Spring Cloud实战专栏:https://blog.csdn.net/superdangbo/category_9270827.html Python 实战专栏:https://blog.csdn.net/superdangbo/category_9271194.html Logback 详解专栏:https:/…...

第六届 传智杯初赛B组
文章目录 A. 字符串拼接🍻 AC code B. 最小差值🍻 AC code C. 红色和紫色🍻 AC code D. abb🍻 AC code E. kotori和素因子🍻 AC code F. 红和蓝🍻 AC code 🥰 Tips:AI可以把代码从 j…...

文档向量化工具(二):text2vec介绍
目录 前言 text2vec开源项目 核心能力 文本向量表示模型 本地试用 安装依赖 下载模型到本地(如果你的网络能直接从huggingface上拉取文件,可跳过) 运行试验代码 前言 在上一篇文章中介绍了,如何从不同格式的文件里提取…...
vscode中pylance无法显示outline无法跳转
当打开的workspce中有较多的文件时,pylance需要分析的文件太多,导致卡住,无法分析到对应的python文件 常见的情况是,当我们在workspace中包含了data文件夹(通常是通过软连接方式把数据集链接过来)…...
番外篇之通讯录
前言:用到的知识点有枚举、结构体、数组,快速排序(用的名字排序) 下面是测试函数: test.c #define _CRT_SECURE_NO_WARNINGS 1 #include"contact.h" void menu() {printf("*************************…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现
目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...
Cursor实现用excel数据填充word模版的方法
cursor主页:https://www.cursor.com/ 任务目标:把excel格式的数据里的单元格,按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例,…...
应用升级/灾备测试时使用guarantee 闪回点迅速回退
1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间, 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点,不需要开启数据库闪回。…...

Day131 | 灵神 | 回溯算法 | 子集型 子集
Day131 | 灵神 | 回溯算法 | 子集型 子集 78.子集 78. 子集 - 力扣(LeetCode) 思路: 笔者写过很多次这道题了,不想写题解了,大家看灵神讲解吧 回溯算法套路①子集型回溯【基础算法精讲 14】_哔哩哔哩_bilibili 完…...

聊聊 Pulsar:Producer 源码解析
一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台,以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中,Producer(生产者) 是连接客户端应用与消息队列的第一步。生产者…...
Spring AI 入门:Java 开发者的生成式 AI 实践之路
一、Spring AI 简介 在人工智能技术快速迭代的今天,Spring AI 作为 Spring 生态系统的新生力量,正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务(如 OpenAI、Anthropic)的无缝对接&…...

前端开发面试题总结-JavaScript篇(一)
文章目录 JavaScript高频问答一、作用域与闭包1.什么是闭包(Closure)?闭包有什么应用场景和潜在问题?2.解释 JavaScript 的作用域链(Scope Chain) 二、原型与继承3.原型链是什么?如何实现继承&a…...

select、poll、epoll 与 Reactor 模式
在高并发网络编程领域,高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表,以及基于它们实现的 Reactor 模式,为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。 一、I…...
Mobile ALOHA全身模仿学习
一、题目 Mobile ALOHA:通过低成本全身远程操作学习双手移动操作 传统模仿学习(Imitation Learning)缺点:聚焦与桌面操作,缺乏通用任务所需的移动性和灵活性 本论文优点:(1)在ALOHA…...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行
项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...