当前位置: 首页 > news >正文

【学习笔记】插值之拉格朗日插值(Lagrange)

0 插值介绍

插值法是广泛应用于理论研究和工程实际的重要数值方法。用提供的部分离散的函数值来进行理论分析和设计都是极不方便的,因此希望能够用一个既能反映原函数特征,又便于计算的简单函数去近似原函数。

1 低次拉格朗日插值

定理:设 x 0 {x_0} x0, ⋯ {\cdots} , x n {x_n} xn是互异插值节点,则满足差值条件 p ( x i ) = y i ( i = 0 , 1 , 2 , ⋯ , n ) {p(x_i)}=y_i(i=0,1,2,\cdots,n) p(xi)=yi(i=0,1,2,,n)的插值多项式 p ( x ) = a 0 + a 1 x + a 2 x 2 + ⋯ + a n x n {p(x)=a_0+a_1x+a_2x^2+\cdots+a_nx^n} p(x)=a0+a1x+a2x2++anxn是存在且唯一的。
证明:由条件可知, p ( x ) p(x) p(x)的系数 a i a_i ai满足
{ a 0 + a 1 x 0 + ⋯ + a n x 0 = y 0 a 0 + a 1 x 1 + ⋯ + a n x 1 = y 1 ⋮ a 0 + a 1 x n + ⋯ + a n x n = y n \left\{ \begin{array}{c} a_0+a_1x_0+\cdots+a_nx_0=y_0\\ a_0+a_1x_1+\cdots+a_nx_1=y_1\\ \vdots\\ a_0+a_1x_n+\cdots+a_nx_n=y_n\\ \end{array} \right. a0+a1x0++anx0=y0a0+a1x1++anx1=y1a0+a1xn++anxn=yn
这是一个关于 a 0 , a 1 , ⋯ , a n a_0,a_1, \cdots ,a_n a0,a1,,an n + 1 n+1 n+1元线性方程组,并注意到其系数行列式为一个范德蒙行列式,又由于 i ≠ j i \ne j i=j x i ≠ x j x_i \ne x_j xi=xj,于是,方程组唯一解。

以上定理的证明提供了一个求 p ( x ) p(x) p(x)的方法,这就是解方程组。但当 n n n较大时,这是很困难的。对于给定的插值点,求形如 p ( x ) = a 0 + a 1 x + a 2 x 2 + ⋯ + a n x n {p(x)=a_0+a_1x+a_2x^2+\cdots+a_nx^n} p(x)=a0+a1x+a2x2++anxn的插值多项式有不同的方法。

1.1 n=1时插值方法

先讨论 n = 1 n=1 n=1的简单情况,互异插值点 x 0 , x 1 x_0,x_1 x0,x1上的函数值分别为 f ( x 0 ) , f ( x 1 ) f(x_0),f(x_1) f(x0),f(x1)是已知的,通过两点 ( x 0 , f ( x 0 ) ) (x_0,f(x_0)) (x0,f(x0)) ( x 1 , f ( x 1 ) ) (x_1,f(x_1)) (x1,f(x1))的插值多项式是一条直线,即两点式
L 1 ( x ) = x − x 1 x 0 − x 1 f ( x 0 ) + x − x 0 x 1 − x 0 f ( x 1 ) L_1(x)=\frac {x-x_1}{x_0-x_1}f(x_0) + \frac {x-x_0}{x_1-x_0}f(x_1) L1(x)=x0x1xx1f(x0)+x1x0xx0f(x1)
显然, L 1 ( x 0 ) = f ( x 0 ) , L 1 ( x 1 ) = f ( x 0 ) L_1(x_0)=f(x_0),L_1(x_1)=f(x_0) L1(x0)=f(x0),L1(x1)=f(x0),满足插值条件,所以 L 1 ( x ) L_1(x) L1(x)就是线性插值多项式。若记 l 0 ( x ) = x − x 1 x 0 − x 1 l_0(x)=\frac{x-x_1}{x_0-x_1} l0(x)=x0x1xx1 l 1 ( x ) = x − x 0 x 1 − x 0 l_1(x)=\frac{x-x_0}{x_1-x_0} l1(x)=x1x0xx0,则称 l 0 ( x ) , l 1 ( x ) l_0(x),l_1(x) l0(x),l1(x)为关于 x 0 x_0 x0 x 1 x_1 x1的线性插值基函数。

于是有
L 1 ( x ) = l 0 ( x ) f ( x 0 ) + l 1 ( x ) f ( x 1 ) L_1(x)=l_0(x)f(x_0)+l_1(x)f(x_1) L1(x)=l0(x)f(x0)+l1(x)f(x1)

1.2 n=2时插值方法

n = 2 n=2 n=2时,给定互异插值点 x 0 , x 1 , x 2 x_0,x_1,x_2 x0,x1,x2上的函数值分别为
f ( x 0 ) , f ( x 1 ) , f ( x 2 ) f(x_0),f(x_1),f(x_2) f(x0),f(x1),f(x2)
l 0 ( x ) = ( x − x 1 ) ( x − x 2 ) ( x 0 − x 1 ) ( x 0 − x 2 ) , l_0(x)=\frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)}, l0(x)=(x0x1)(x0x2)(xx1)(xx2),
l 1 ( x ) = ( x − x 0 ) ( x − x 2 ) ( x 1 − x 0 ) ( x 1 − x 2 ) , l_1(x)=\frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)}, l1(x)=(x1x0)(x1x2)(xx0)(xx2),
l 2 ( x ) = ( x − x 0 ) ( x − x 1 ) ( x 2 − x 0 ) ( x 2 − x 1 ) l_2(x)=\frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)} l2(x)=(x2x0)(x2x1)(xx0)(xx1)
称为关于点 x 0 , x 1 , x 2 x_0,x_1,x_2 x0,x1,x2的二次插值基函数,它满足
l i ( x j ) = { 1 , j = i 0 , j ≠ i , i , j = 0 , 1 , 2 , ⋯ l_i(x_j)= \left\{ \begin{array}{c} 1, j = i \\ 0, j \ne i\\ \end{array},i,j=0,1,2,\cdots \right. li(xj)={1,j=i0,j=i,i,j=0,1,2,
满足条件的 L 2 ( x i ) = f ( x i ) ( i = 0 , 1 , 2 ) L_2(x_i)=f(x_i)(i=0,1,2) L2(xi)=f(xi)(i=0,1,2)的二次插值多项式 L 2 ( x ) L_2(x) L2(x)可表示为
L 2 ( x ) = l 0 ( x ) f ( x 0 ) + l 1 ( x ) f ( x 1 ) + l 2 ( x ) f ( x 2 ) L_2(x)=l_0(x)f(x_0)+l_1(x)f(x_1)+l_2(x)f(x_2) L2(x)=l0(x)f(x0)+l1(x)f(x1)+l2(x)f(x2)
y = L 2 ( x ) y=L_2(x) y=L2(x)的图形是通过三点 ( x 1 , f ( x i ) ) ( i = 0 , 1 , 2 ) (x_1,f(x_i))(i=0,1,2) (x1,f(xi))(i=0,1,2)的抛物线。

1.3 举例

x x x14916
x \sqrt{x} x 1234

解:
选择与 x = 5 x=5 x=5最接近的三点 x 0 = 1 , x 1 = 4 , x 2 = 9 x_0=1,x_1=4,x_2=9 x0=1,x1=4,x2=9为插值点,由
L 2 ( x ) = l 0 ( x ) f ( x 0 ) + l 1 ( x ) f ( x 1 ) + l 2 ( x ) f ( x 2 ) L_2(x)=l_0(x)f(x_0)+l_1(x)f(x_1)+l_2(x)f(x_2) L2(x)=l0(x)f(x0)+l1(x)f(x1)+l2(x)f(x2)
得, 5 ≈ 1 ⋅ ( 5 − 4 ) ( 5 − 9 ) ( 1 − 4 ) ( 1 − 9 ) + 2 ⋅ ( 5 − 1 ) ( 5 − 9 ) ( 4 − 1 ) ( 4 − 9 ) + 3 ⋅ ( 5 − 1 ) ( 5 − 4 ) ( 9 − 1 ) ( 9 − 4 ) ≈ 2.267 \sqrt{5} \approx 1 \cdot \frac{(5-4)(5-9)}{(1-4)(1-9)}+2 \cdot \frac{(5-1)(5-9)}{(4-1)(4-9)}+ 3 \cdot \frac{(5-1)(5-4)}{(9-1)(9-4)} \approx 2.267 5 1(14)(19)(54)(59)+2(41)(49)(51)(59)+3(91)(94)(51)(54)2.267

相关文章:

【学习笔记】插值之拉格朗日插值(Lagrange)

0 插值介绍 插值法是广泛应用于理论研究和工程实际的重要数值方法。用提供的部分离散的函数值来进行理论分析和设计都是极不方便的,因此希望能够用一个既能反映原函数特征,又便于计算的简单函数去近似原函数。 1 低次拉格朗日插值 定理:设…...

无人机电力巡检系统运行流程全解读

随着电力行业体系不断完善,保障电网运营的安全成为至关重要的任务。传统的人工巡检方式在面对电力设备广泛分布和复杂工况时显得效率低下,为了解决这一难题,无人机电力巡检系统应运而生,以智能化的运行流程,为电网安全…...

有关全局变量和sizeof的题

#define _CRT_SECURE_NO_WARNINGS 1 #include<stdio.h> int i; int main() {i--;if (i > sizeof(i)){printf(">");}else{printf("<");}return 0; } 这道题结果是 > 首先对于一个全局变量&#xff0c;当没有对其初始化时&#xff0c;它…...

vue简述

vue为渐进式框架&#xff1a;vmmv 1.易用 有html、css、javascript基础&#xff0c;即可学习vue框架 2.高效、开发前端页面 非常高效 1.vue的体积小、压缩完只需要20k的大小 2.超快的虚拟dom操作js中非常多的dom操作&#xff0c;vue设计虚拟dom非常快 3.设计时vue底层深度优化 …...

YOLOv8 训练自己的分割数据集

之前写过一篇 使用YOLOv8训练自己的【目标检测】数据集-【收集数据集】-【标注数据集】-【划分数据集】-【配置训练环境】-【训练模型】-【评估模型】-【导出模型】&#xff0c;里面带大家整个流程走过一遍了&#xff0c; 这篇文章我们来介绍如何使用 YOLOv8 训练分割数据集&a…...

Python实现DDos攻击实例详解

文章目录 SYN 泛洪攻击Scapy3k 基本用法代码实现DDos 实现思路argparse 模块socket 模块代码实现Client 端程序测试后记关于Python技术储备一、Python所有方向的学习路线二、Python基础学习视频三、精品Python学习书籍四、Python工具包项目源码合集①Python工具包②Python实战案…...

微信小程序实现【点击 滑动 评分 评星(5星)】功能

wxml文件&#xff1a; <view class"wxpl_xing"><view class"manyidu">{{scoreContent}}</view><view><block wx:for{{scoreArray}} wx:for-item"item"><view classstarLen bindtapchangeScore data-sy"{{…...

堡垒机的用途

堡垒机的用途 堡垒机&#xff0c;即在一个特定的网络环境下&#xff0c;为了保障网络和数据不受来自外部和内部用户的入侵和破坏&#xff0c;而运用各种技术手段监控和记录运维人员对网络内的服务器、网络设备、安全设备、数据库等设备的操作行为&#xff0c;以便集中报警、及时…...

超全超实用行业解决方案合集,覆盖十大行业数据应用需求

现代企业面对复杂的业务需求&#xff0c;对数据分析的需求日益增加。 从实时销售到市场趋势&#xff0c;从客户行为到产品优化&#xff0c;每个环节都依赖于数据支持。然而&#xff0c;传统的数据分析平台常分散在不同系统和团队中&#xff0c;形成数据孤岛&#xff0c;降低了…...

一盏茶的时间,入门 Node.js

一、.什么是 Node.js&#xff1f; Node.js 是一个基于 Chrome V8 引擎的 JavaScript 运行时&#xff0c;用于构建高性能、可伸缩的网络应用。 它采用事件驱动、非阻塞 I/O 模型&#xff0c;使其在处理并发请求时表现出色。 二、安装 Node.js 首先&#xff0c;让我们从 Node.…...

关于Java多线程的一些随笔

Synchronized与ReentrantLock有哪些相同点和不同点&#xff1f; 在Java中&#xff0c;synchronized关键字和ReentrantLock类都用于管理线程间的同步&#xff0c;但它们在实现方式、功能和灵活性方面存在一些差异。以下是它们的相同点和不同点&#xff1a; 相同点 互斥性&…...

Answering difficult questions in other way

I’m not (too) sure Q&#xff1a;Do you think computers make life easier&#xff1f; A&#xff1a;I’m not (too) sure, to be honest, but I reckon they do make life easier because… I can’t say for sure, but … Q&#xff1a;Do you think computers make lif…...

RabbitMQ教程:Linux下安装、基本命令与Spring Boot集成

RabbitMQ教程&#xff1a;Linux下安装、基本命令与Spring Boot集成 1. RabbitMQ简介 RabbitMQ是一个开源的消息代理和队列服务器&#xff0c;用于通过轻量级消息传递协议&#xff08;AMQP&#xff09;在分布式系统中传递消息。它支持多种编程语言&#xff0c;包括Java、Pytho…...

王者荣耀小游戏

第一步是创建项目 项目名自拟 第二部创建个包名 来规范class 然后是创建类 GameFrame 运行类 package com.sxt; package com.sxt;import java.awt.Graphics; import java.awt.Image; import java.awt.Toolkit; import java.awt.event.ActionEvent; import java.awt.event.…...

JAVA小游戏“简易版王者荣耀”

第一步是创建项目 项目名自拟 第二部创建个包名 来规范class 然后是创建类 GameFrame 运行类 package com.sxt;import java.awt.Graphics; import java.awt.Image; import java.awt.Toolkit; import java.awt.event.ActionEvent; import java.awt.event.ActionListener; im…...

Nginx高级

Nginx高级 第一部分&#xff1a;扩容 通过扩容提升整体吞吐量 1.单机垂直扩容&#xff1a;硬件资源增加 云服务资源增加 整机&#xff1a;IBM、浪潮、DELL、HP等 CPU/主板&#xff1a;更新到主流 网卡&#xff1a;10G/40G网卡 磁盘&#xff1a;SAS(SCSI) HDD&#xff08;机械…...

深度学习中小知识点系列(三) 解读Mosaic 数据增强

前言 Mosaic数据增强&#xff0c;这种数据增强方式简单来说就是把4张图片&#xff0c;通过随机缩放、随机裁减、随机排布的方式进行拼接。Mosaic有如下优点&#xff1a; &#xff08;1&#xff09;丰富数据集&#xff1a;随机使用4张图片&#xff0c;随机缩放&#xff0c;再随…...

telnet-MISC-bugku-解题步骤

——CTF解题专栏—— 题目信息&#xff1a; 题目&#xff1a;这是一张单纯的图片 作者&#xff1a;未知 提示&#xff1a;无 解题附件&#xff1a; 解题思路&#xff1a; (⊙﹏⊙)这是个什么文件pcap文件分析_pcap文件打开-CSDN博客查了一下&#xff0c;但没看懂&#xff0c…...

大数据Doris(二十九):数据导入(Insert Into)

文章目录 数据导入(Insert Into) 一、​​​​​​​创建导入...

jmeter测试dubbo接口

本文讲解jmeter测试dubbo接口的实现方式&#xff0c;文章以一个dubbo的接口为例子进行讲解&#xff0c;该dubbo接口实现的功能为&#xff1a; 一&#xff1a;首先我们看服务端代码 代码架构为&#xff1a; 1&#xff1a;新建一个maven工程&#xff0c;pom文件为&#xff1a; 1…...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路

进入2025年以来&#xff0c;尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断&#xff0c;但全球市场热度依然高涨&#xff0c;入局者持续增加。 以国内市场为例&#xff0c;天眼查专业版数据显示&#xff0c;截至5月底&#xff0c;我国现存在业、存续状态的机器人相关企…...

用docker来安装部署freeswitch记录

今天刚才测试一个callcenter的项目&#xff0c;所以尝试安装freeswitch 1、使用轩辕镜像 - 中国开发者首选的专业 Docker 镜像加速服务平台 编辑下面/etc/docker/daemon.json文件为 {"registry-mirrors": ["https://docker.xuanyuan.me"] }同时可以进入轩…...

【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统

目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索&#xff08;基于物理空间 广播范围&#xff09;2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...

SQL慢可能是触发了ring buffer

简介 最近在进行 postgresql 性能排查的时候,发现 PG 在某一个时间并行执行的 SQL 变得特别慢。最后通过监控监观察到并行发起得时间 buffers_alloc 就急速上升,且低水位伴随在整个慢 SQL,一直是 buferIO 的等待事件,此时也没有其他会话的争抢。SQL 虽然不是高效 SQL ,但…...

AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别

【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而&#xff0c;传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案&#xff0c;能够实现大范围覆盖并远程采集数据。尽管具备这些优势&#xf…...

【Android】Android 开发 ADB 常用指令

查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...

Chrome 浏览器前端与客户端双向通信实战

Chrome 前端&#xff08;即页面 JS / Web UI&#xff09;与客户端&#xff08;C 后端&#xff09;的交互机制&#xff0c;是 Chromium 架构中非常核心的一环。下面我将按常见场景&#xff0c;从通道、流程、技术栈几个角度做一套完整的分析&#xff0c;特别适合你这种在分析和改…...

HybridVLA——让单一LLM同时具备扩散和自回归动作预测能力:训练时既扩散也回归,但推理时则扩散

前言 如上一篇文章《dexcap升级版之DexWild》中的前言部分所说&#xff0c;在叠衣服的过程中&#xff0c;我会带着团队对比各种模型、方法、策略&#xff0c;毕竟针对各个场景始终寻找更优的解决方案&#xff0c;是我个人和我司「七月在线」的职责之一 且个人认为&#xff0c…...

k8s从入门到放弃之HPA控制器

k8s从入门到放弃之HPA控制器 Kubernetes中的Horizontal Pod Autoscaler (HPA)控制器是一种用于自动扩展部署、副本集或复制控制器中Pod数量的机制。它可以根据观察到的CPU利用率&#xff08;或其他自定义指标&#xff09;来调整这些对象的规模&#xff0c;从而帮助应用程序在负…...

spring Security对RBAC及其ABAC的支持使用

RBAC (基于角色的访问控制) RBAC (Role-Based Access Control) 是 Spring Security 中最常用的权限模型&#xff0c;它将权限分配给角色&#xff0c;再将角色分配给用户。 RBAC 核心实现 1. 数据库设计 users roles permissions ------- ------…...