当前位置: 首页 > news >正文

【自然语言处理】正向最大匹配算法(FMM),反向最大匹配算法(BMM)和双向最大匹配算法(BM)原理及实现

目录

一,正向最大匹配算法(FMM)

 二,反向最大匹配算法(RMM)


一,正向最大匹配算法(FMM)

        正向最大匹配分词(Forward maximum matching segmentation)通常简称为FMM法。其基本思想为:假定分词词典中的最长词有i个汉字字符,则用被处理文档的当前字串中的前i个字作为匹配字段,查找字典。若字典中存在这样的一个字词,则匹配成功,匹配字段被作为一个词切分出来。如果词典中找不到这样的一个字词,则匹配失败,将匹配字段中的最后一个字去掉,对剩下的字串重新进行匹配处理。如此进行下去,直到匹配成功,即切分出一个词或剩余字串的长度为零为止。这样就完成了一轮匹配,然后取下一个i字字串进行匹配处理,直到文档被扫描完为止。

例子:

设变量dt为字典,s为待切字符串,result为被切后的词

令dt = ['abc', 'bcd'] ,s = ['abcd'],则 result = ['abc', 'd']

原理:字典中最大字符长度为‘abc’和‘bcd’,正向选取‘abc’,则拿‘abc’去匹配,s中匹配到‘abc’后切出,之后字典中最长的是‘d’,匹配到s的‘d’后切出,得到切片后的result = ['abc', 'd']

代码实现: 

def FMM(dt, s):  # 正向最大匹配算法result = []   max_len = max([len(i) for i in dt])    # 选取字典里长度最大的字符串start = 0while start != len(s):    # 判断列表不为空,建立循环                index = start + max_len    # 从0开始正向索引最大长度的字符串if index > len(s):         # 判断是否溢出列表index = len(s)for _ in range(max_len):    t = s[start:index]       # t是切片if t in dt or len(t) == 1:result.append(t)start = indexbreakindex -= 1 # 为了保证算法能够扫描到所有字符return result

 二,反向最大匹配算法(RMM)

        逆向最大匹配算法(Reserve maximum matching segmentation)的基本原理与正向最大匹配法相同,不同的是分词切分的方向与FMM法相反。逆向最大匹配法从被处理文档的末端开始匹配扫描,每次取最末端的i个字符(为词典中最长词数)作为匹配字段,若匹配失败,则去掉匹配字段最前面的一个字,继续匹配。相应地,它使用的分词词典是逆序词典,其中的每个词条都将按逆序方式存放。在实际处理时,先将文档进行倒排处理,生成逆序文档。然后,根据逆序词典,对逆序文档用正向最大匹配法处理即可。

例子:

设变量dt为字典,s为待切字符串,result为被切后的词

令dt = ['abc', 'bcd'] ,s = ['abcd'],则 result = ['a', 'bcd']

原理:字典中最大长度为'abc',‘bcd’,反向选取‘bcd’,则拿‘bcd’去匹配,s中匹配到‘bcd’后切出,之后字典中最长的是‘a’,匹配到s的‘a’后切出,得到切片后的result = ['a', 'bcd']

代码实现:

def RMM(dt, s): # 反向最大匹配算法result = []max_len = max([len(i) for i in dt]) # 选取字典里长度最大的字符串start = len(s)while start != 0:    #判断列表不为空,建立循环index = start - max_len    # 从列表最后开始索引最大长度的字符串if index < 0:        # 判断是否溢出列表index = 0for _ in range(max_len):t = s[index:start]    # t是切片if t in dt or len(t) == 1:result.insert(0, t)    # 在最前面插入start = indexbreakindex += 1return result

三,双向匹配算法(BM)

        双向最大匹配算法的原理就是将正向最大匹配算法和逆向最大匹配算法进行比较,从而选择正确的分词方式。

        比较原则/步骤:

        1.比较两种匹配算法的结果

        2.如果分词数量结果不同:选择数量较少的那个

        3.如果分词数量结果相同

​                 1.分词结果相同,返回任意一个

​                 2.分词结果不同,返回单字数较少的一个

​                 3.若单字数也相同,任意返回一个

例子:

设变量dt为字典,s为待切字符串,result_1为被正向切后的词,result_2为被反向切后的词

令dt = ['abc', 'deab'] ,s = ['abcdeabc'],则 result_1 = ["abc", "deab", "c"],result_2=["c", "deab"]

原理:字典中最大长度为'deab',则拿‘deab’去匹配,s中匹配到‘deab’后切出,之后字典中最长的是‘abc’,匹配到s的‘abc’后切出,得到切片后的result_1 = ["abc", "deab", "c"],同理result_2=["c", "deab"],其中正向的切词有三个,逆向有两个,数量不相等选择分词数量 少的,则输出逆向切词result_2=["c", "deab"]

def BM(dt, s): # 双向最大切词r1 = FMM(dt, s)r2 = RMM(dt, s)if len(r1) == len(r2):if r1 == r2:return r1else:r1_cnt = len([i for i in r1 if len(i)==1])r2_cnt = len([i for i in r2 if len(i)==1])return r1 if r1_cnt < r2_cnt else r2else:return r1 if len(r1) < len(r2) else r2

相关文章:

【自然语言处理】正向最大匹配算法(FMM),反向最大匹配算法(BMM)和双向最大匹配算法(BM)原理及实现

目录 一&#xff0c;正向最大匹配算法&#xff08;FMM&#xff09; 二&#xff0c;反向最大匹配算法&#xff08;RMM) 一&#xff0c;正向最大匹配算法&#xff08;FMM&#xff09; 正向最大匹配分词&#xff08;Forward maximum matching segmentation&#xff09;通常简称为…...

数据结构 | 堆排序

数据结构 | 堆排序 文章目录 数据结构 | 堆排序建立大堆排序结果以及全部代码 如果没有看过堆的实现的话可以先看前面的一章堆的实现&#xff0c;然后再来看这个堆排序&#xff0c;都是比较简单的~~ 这里堆排序首先建堆&#xff0c;建堆是要建小堆还是大堆呢&#xff1f; 在堆排…...

编程语言发展史:Go语言的设计和特点

一、前言 Go语言是一种由Google开发的编程语言&#xff0c;于2007年开始设计&#xff0c;2009年首次发布。Go语言是一种面向对象、静态类型、编译型的语言&#xff0c;具有高效、简单、安全等特点&#xff0c;可用于开发各种类型的应用程序。Go语言的设计和特点使其成为越来越…...

FinGPT:金融垂类大模型架构

Overview 动机 架构 底座模型&#xff1a; Llama2Chatglm2 Lora训练 技术路径 自动收集数据并整理 指令微调 舆情分析 搜新闻然后相似搜索 检索增强架构 智能投顾 Hugging face 地址 学术成果及未来方向 参考资料...

24. 深度学习进阶 - 矩阵运算的维度和激活函数

Hi&#xff0c;你好。我是茶桁。 咱们经过前一轮的学习&#xff0c;已经完成了一个小型的神经网络框架。但是这也只是个开始而已&#xff0c;在之后的课程中&#xff0c;针对深度学习我们需要进阶学习。 我们要学到超参数&#xff0c;优化器&#xff0c;卷积神经网络等等。看…...

杰发科技AC7801——keil工程移植到IAR

0、简介 发现AC7801的代码只有keil工程的&#xff0c;IAR和Eclipse的代码只有一个例程&#xff0c;于是在从Keil移植到IAR时候遇到的问题记录下。 正常情况下&#xff0c;直接把keil的usr用户代码移植到iar的文件夹下面&#xff0c;删除原本的文件再添加新加进来的文件即可。…...

Word怎么看字数?简单教程分享!

“我在写文章时&#xff0c;总是想看看写了多少字。但是我发现我的Word无法看到字数。在Word中应该怎么查看字数呢&#xff1f;请帮帮我&#xff01;” Word是一个广泛使用的文档编辑工具。在我们编辑文章时&#xff0c;如果想查看写了多少字&#xff0c;也是可以轻松完成的。 …...

万字解析设计模式之观察者模式、中介者模式、访问者模式

一、观察者模式 1.1概述 观察者模式是一种行为型设计模式&#xff0c;它允许一个对象&#xff08;称为主题或可观察者&#xff09;在其状态发生改变时&#xff0c;通知它的所有依赖对象&#xff08;称为观察者&#xff09;并自动更新它们。这种模式提供了一种松耦合的方式&…...

【MySQL | TCP】宝塔面板结合内网穿透实现公网远程访问

文章目录 前言1.Mysql服务安装2.创建数据库3.安装cpolar3.2 创建HTTP隧道4.远程连接5.固定TCP地址5.1 保留一个固定的公网TCP端口地址5.2 配置固定公网TCP端口地址 前言 宝塔面板的简易操作性&#xff0c;使得运维难度降低&#xff0c;简化了Linux命令行进行繁琐的配置&#x…...

Python break用法详解

Python 语言没有提供 goto 语句来控制程序的跳转&#xff0c;这种做法虽然提高了程序流程控制的可读性&#xff0c;但降低了灵活性。为了弥补这种不足&#xff0c;Python 提供了 continue 和 break 来控制循环结构。本节先讲解 break 的用法。 某些时候&#xff0c;需要在某种…...

【C++初阶】STL详解(五)List的介绍与使用

本专栏内容为&#xff1a;C学习专栏&#xff0c;分为初阶和进阶两部分。 通过本专栏的深入学习&#xff0c;你可以了解并掌握C。 &#x1f493;博主csdn个人主页&#xff1a;小小unicorn ⏩专栏分类&#xff1a;C &#x1f69a;代码仓库&#xff1a;小小unicorn的代码仓库&…...

MySQL特点和基本语句

MySQL MySQL是一种流行的关系型数据库管理系统&#xff0c;由瑞典MySQL AB公司开发&#xff0c;现属于甲骨文公司&#xff08;Oracle&#xff09;旗下产品。MySQL是基于C语言开发的&#xff0c;它具有高性能、可扩展性、易用性等特点&#xff0c;并且支持大量的用户访问。 My…...

Gin 学习笔记03-参数绑定

参数绑定 1、ShouldBindJSON2、ShouldBindQuery3、ShouldBindUri4、ShouldBind 1、ShouldBindJSON package mainimport ("github.com/gin-gonic/gin""net/http" )type User struct {Name string json:"name"Gender string json:"gender&…...

【100天精通Python】Day73:python机器学习入门算法详解与代码示例

目录 1. 监督学习算法&#xff1a; 1.1 线性回归&#xff08;Linear Regression&#xff09;&#xff1a; 1.2 逻辑回归&#xff08;Logistic Regression&#xff09;&#xff1a; 1.3 决策树&#xff08;Decision Tree&#xff09;&#xff1a; 1.4 支持向量机&#xff…...

Node.js入门指南(四)

目录 express框架 express介绍 express使用 express路由 express 响应设置 中间件 路由模块化 EJS 模板引擎 express-generator hello&#xff0c;大家好&#xff01;上一篇文章我们介绍了Node.js的模块化以及包管理工具等知识&#xff0c;这篇文章主要给大家分享Nod…...

Java LeetCode篇-深入了解关于数组的经典解法

&#x1f525;博客主页&#xff1a; 【小扳_-CSDN博客】 ❤感谢大家点赞&#x1f44d;收藏⭐评论✍ 文章目录 1.0 轮转数组 1.1 使用移位的方式 1.2 使用三次数组逆转法 2.0 消失的数字 2.1 使用相减法 2.2 使用异或的方式 3.0 合并两个有序数组 3.1 使用三指针方式 3.2 使用合…...

LeeCode前端算法基础100题(4)- 无重复字符的最长子串

一、问题详情&#xff1a; 给定一个字符串 s &#xff0c;请你找出其中不含有重复字符的 最长子串 的长度。 示例 1: 输入: s "abcabcbb" 输出: 3 解释: 因为无重复字符的最长子串是 "abc"&#xff0c;所以其长度为 3。示例 2: 输入: s "bbbbb…...

Axios简单使用与配置安装-Vue

安装Axios npm i axios main.js 导入 import Axios from axios Vue.prototype.$axios Axios简单发送请求 get getTest() {this.$axios({method: GET,url: https://apis.jxcxin.cn/api/title?urlhttps://apis.jxcxin.cn/}).then(res > {//请求成功回调console.log(res)}…...

【初始前后端交互+原生Ajax+Fetch+axios+同源策略+解决跨域】

初始前后端交互原生AjaxFetchaxios同源策略解决跨域 1 初识前后端交互2 原生Ajax2.1 Ajax基础2.2 Ajax案例2.3 ajax请求方式 3 Fetch3.1 fetch基础3.2 fetch案例 4 axios4.1 axios基础4.2 axios使用4.2.1 axios拦截器4.2.2 axios中断器 5 同源策略6 解决跨域6.1 jsonp6.2 其他技…...

C语言--每日选择题--Day24

第一题 1. 在C语言中&#xff0c;非法的八进制是&#xff08; &#xff09; A&#xff1a;018 B&#xff1a;016 C&#xff1a;017 D&#xff1a;0257 答案及解析 A 八进制是0&#xff5e;7的数字&#xff0c;所以A错误 第二题 2. fun((exp1,exp2),(exp3,exp4,exp5))有几…...

后进先出(LIFO)详解

LIFO 是 Last In, First Out 的缩写&#xff0c;中文译为后进先出。这是一种数据结构的工作原则&#xff0c;类似于一摞盘子或一叠书本&#xff1a; 最后放进去的元素最先出来 -想象往筒状容器里放盘子&#xff1a; &#xff08;1&#xff09;你放进的最后一个盘子&#xff08…...

docker详细操作--未完待续

docker介绍 docker官网: Docker&#xff1a;加速容器应用程序开发 harbor官网&#xff1a;Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台&#xff0c;用于将应用程序及其依赖项&#xff08;如库、运行时环…...

2021-03-15 iview一些问题

1.iview 在使用tree组件时&#xff0c;发现没有set类的方法&#xff0c;只有get&#xff0c;那么要改变tree值&#xff0c;只能遍历treeData&#xff0c;递归修改treeData的checked&#xff0c;发现无法更改&#xff0c;原因在于check模式下&#xff0c;子元素的勾选状态跟父节…...

MODBUS TCP转CANopen 技术赋能高效协同作业

在现代工业自动化领域&#xff0c;MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步&#xff0c;这两种通讯协议也正在被逐步融合&#xff0c;形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...

python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)

更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...

Mac下Android Studio扫描根目录卡死问题记录

环境信息 操作系统: macOS 15.5 (Apple M2芯片)Android Studio版本: Meerkat Feature Drop | 2024.3.2 Patch 1 (Build #AI-243.26053.27.2432.13536105, 2025年5月22日构建) 问题现象 在项目开发过程中&#xff0c;提示一个依赖外部头文件的cpp源文件需要同步&#xff0c;点…...

iview框架主题色的应用

1.下载 less要使用3.0.0以下的版本 npm install less2.7.3 npm install less-loader4.0.52./src/config/theme.js文件 module.exports {yellow: {theme-color: #FDCE04},blue: {theme-color: #547CE7} }在sass中使用theme配置的颜色主题&#xff0c;无需引入&#xff0c;直接可…...

Springboot 高校报修与互助平台小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;高校报修与互助平台小程序被用户普遍使用&#xff0c;为…...

JS面试常见问题——数据类型篇

这几周在进行系统的复习&#xff0c;这一篇来说一下自己复习的JS数据结构的常见面试题中比较重要的一部分 文章目录 一、JavaScript有哪些数据类型二、数据类型检测的方法1. typeof2. instanceof3. constructor4. Object.prototype.toString.call()5. type null会被判断为Obje…...

Server - 使用 Docker 配置 PyTorch 研发环境

欢迎关注我的CSDN&#xff1a;https://spike.blog.csdn.net/ 本文地址&#xff1a;https://spike.blog.csdn.net/article/details/148421901 免责声明&#xff1a;本文来源于个人知识与公开资料&#xff0c;仅用于学术交流&#xff0c;欢迎讨论&#xff0c;不支持转载。 建议使…...