智能优化算法应用:基于水循环算法无线传感器网络(WSN)覆盖优化 - 附代码
智能优化算法应用:基于水循环算法无线传感器网络(WSN)覆盖优化 - 附代码
文章目录
- 智能优化算法应用:基于水循环算法无线传感器网络(WSN)覆盖优化 - 附代码
- 1.无线传感网络节点模型
- 2.覆盖数学模型及分析
- 3.水循环算法
- 4.实验参数设定
- 5.算法结果
- 6.参考文献
- 7.MATLAB代码
摘要:本文主要介绍如何用水循环算法进行无线传感器网(WSN)覆盖优化。
1.无线传感网络节点模型
本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n ) (x_n,y_n) (xn,yn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p ) p(x_p,y_p) p(xp,yp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)≤Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2} d(n,p)=(xn−xp)2+(yn−yp)2为点和之间的欧式距离。
2.覆盖数学模型及分析
现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , r } node_i=\{x_i,y_i,r\} nodei={xi,yi,r},表示以节点 ( x i , y i ) (x_i,y_i) (xi,yi)为圆心,r为监测半径的圆,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n m*n m∗n个像素点,像素点的坐标为 ( x , y ) (x,y) (x,y),目标像素点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2}\tag{3} d(nodei,p)=(xi−x)2+(yi−y)2(3)
目标区域内像素点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为像素点 ( x , y ) (x,y) (x,y)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,nodei)={1,ifd(nodei,p)≤r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n (5) CoverRatio = \frac{\sum P_{cov}}{m*n}\tag{5} CoverRatio=m∗n∑Pcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。
3.水循环算法
水循环算法原理请参考:https://blog.csdn.net/u011835903/article/details/108549079
该算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n}) \tag{6} fun=argmin(1−CoverRatio)=argmin(1−m∗n∑Pcov)(6)
4.实验参数设定
无线传感器覆盖参数设定如下:
%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY
AreaX = 100;
AreaY = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径
水循环算法参数如下:
%% 设定优化参数
pop=30; % 种群数量
Max_iteration=80; %设定最大迭代次数
lb = ones(1,2*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N)];
dim = 2*N;%维度为2N,N个坐标点
5.算法结果
从结果来看,覆盖率在优化过程中不断上升,表明水循环算法对覆盖优化起到了优化的作用。
6.参考文献
[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.
7.MATLAB代码
相关文章:

智能优化算法应用:基于水循环算法无线传感器网络(WSN)覆盖优化 - 附代码
智能优化算法应用:基于水循环算法无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于水循环算法无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.水循环算法4.实验参数设定5.算法结果6.参考文献7.…...
java-netty知识点笔记和注意事项
如何获取ctx的id 使用ctx.ctx.toString()就可以了 public void channelRead(ChannelHandlerContext ctx, Object msg) {//传来的消息包装成字节缓冲区String byteBuf (String) msg; // ByteBuf byteBuf (ByteBuf) msg;//Netty提供了字节缓冲区的toString方法ÿ…...
英伟达不同系列GPU介绍
英伟达有以下几个系列的产品线,并介绍它们的特点和主要应用领域: 1. GeForce系列(G系列): - 特点:GeForce系列是英伟达主打的消费级GPU产品线,注重提供高性能的图形处理能力和游戏特性。它们…...

C语言——I /深入理解指针(二)
一、数组名的理解 int arr[10] {1,2,3,4,5,6,7,8,9,10}; int *p &arr[0];这⾥我们使⽤ &arr[0] 的⽅式拿到了数组第⼀个元素的地址,但是其实数组名本来就是地址,⽽且 是数组⾸元素的地址,我们来做个测试。 #include <stdio.…...

MySQL使用函数和存储过程实现:向数据表快速插入大量测试数据
实现过程 1.创建表 CREATE TABLE user_info (id INT(11) NOT NULL AUTO_INCREMENT,name VARCHAR(20) DEFAULT NULL,age INT(3) DEFAULT NULL,pwd VARCHAR(20) DEFAULT NULL,phone_number VARCHAR(11) DEFAULT NULL,email VARCHAR(255) DEFAULT NULL,address VARCHAR(255) DEF…...
力扣labuladong——一刷day59
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、力扣549. 二叉树中最长的连续序列二、力扣1325. 删除给定值的叶子节点 前言 像求和、求高度这种基本的二叉树函数很容易写,有时候只要在它们的后…...

接口性能测试 —— Jmeter并发与持续性压测
接口压测的方式: 1、同时并发:设置线程组、执行时间、循环次数,这种方式可以控制接口请求的次数 2、持续压测:设置线程组、循环次数,勾选“永远”,调度器(持续时间),这种…...

redis报错3
INFO: Initializing SpringDispatcherServletdispatcherServlet...

Proteus的网络标号与总线
Proteus为了减少过多、复杂的连线,可以使用网络标号与总线配合使用。 Proteus的导线上添加了网络标号,意味着在Proteus上相同的网络标号是连在一起的,所说在图纸上看不出来。 如下图是比较好的Proteus中使用总线的绘制的图纸。可以效仿着画…...

4、stable diffusion
github 安装anaconda环境 conda env create -f environment.yaml conda activate ldm安装依赖 conda install pytorch1.12.1 torchvision0.13.1 torchaudio0.12.1 cudatoolkit11.3 -c pytorch pip install transformers4.19.2 diffusers invisible-watermark pip install -e…...
LeetCode51. N-Queens
文章目录 一、题目二、题解 一、题目 The n-queens puzzle is the problem of placing n queens on an n x n chessboard such that no two queens attack each other. Given an integer n, return all distinct solutions to the n-queens puzzle. You may return the answe…...

前端vue3——html2canvas给网站截图生成宣传海报
文章目录 ⭐前言⭐选择html2canvas实现网页截图💖 截图 ⭐图片url截图显示不出来问题💖 解决 ⭐最终效果💖 定义海报 ⭐总结⭐结束 ⭐前言 大家好,我是yma16,本文分享关于 前端vue3——html2canvas给网站截图生成宣传…...
C语言实现串的部分算法
一、简介 串(string)(或字符串)是由零个或多个字符组成的有序序列,一般记为 sa1a2....an s为串的名,用单引号括起来的时字符序列串的值,串中字符的数目n称为串的长度。 零个字符的串称为空串…...

UE5、CesiumForUnreal实现加载GeoJson绘制多面(MultiPolygon)功能(支持点选高亮)
文章目录 1.实现目标2.实现过程2.1 数据与预处理2.2 GeoJson解析2.3 Mesh构建与属性存储2.4 核心代码2.5 材质2.6 蓝图应用测试3.参考资料1.实现目标 在之前的文章中,基于GeoJson数据加载,实现了绘制单面功能,但只支持单个要素Feature。本文这里实现对Geojson内所有面要素的…...

pandas教程:USDA Food Database USDA食品数据库
文章目录 14.4 USDA Food Database(美国农业部食品数据库) 14.4 USDA Food Database(美国农业部食品数据库) 这个数据是关于食物营养成分的。存储格式是JSON,看起来像这样: {"id": 21441, &quo…...

0基础学习VR全景平台篇第122篇:VR视频剪辑和输出 - PR软件教程
上课!全体起立~ 大家好,欢迎观看蛙色官方系列全景摄影课程! 开始之前如果没有接触过pr这款软件的话,建议先去看上一篇 认识视频剪辑软件Premiere 大致了解一下pr。 回到正题今天来教大家VR视频的剪辑和输出 我们先双击打开…...

ucharts中,当数据为0时,不显示
当为0时,会显示出来,值比较小的时候,数据会显示在一起,不美观 期望效果: 实现步骤: 我是将uCharts插件下载导入到src/uni_modules下的 1、修改src/uni_modules/qiun-data-charts/js_sdk/u-charts/confi…...

React函数组件渲染两次
渲染两次是因为react默认开启了严格模式 React.StrictMode标签作用: 1、识别不安全的生命周期 2、关于使用过时字符串 ref API 的警告 3、关于使用废弃的 findDOMNode 方法的警告 4、检测意外的副作用 5、检测过时的 context API 注释掉React.StrictMode即为关闭严…...

人工智能 - 图像分类:发展历史、技术全解与实战
目录 一、:图像分类的历史与进展历史回顾深度学习的革命当前趋势未来展望 二:核心技术解析图像预处理神经网络基础卷积神经网络(CNN)深度学习框架 第三部分:核心代码与实现环境搭建数据加载和预处理构建CNN模型模型训练…...

go标准库
golang标准库io包 input output io操作是一个很庞大的工程,被封装到了许多包中以供使用 先来讲最基本的io接口 Go语言中最基本的I/O接口是io.Reader和io.Writer。这些接口定义了读取和写入数据的通用方法,为不同类型的数据源和数据目标提供了统一的接…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型
摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...

网络六边形受到攻击
大家读完觉得有帮助记得关注和点赞!!! 抽象 现代智能交通系统 (ITS) 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 (…...
Objective-C常用命名规范总结
【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名(Class Name)2.协议名(Protocol Name)3.方法名(Method Name)4.属性名(Property Name)5.局部变量/实例变量(Local / Instance Variables&…...
基于数字孪生的水厂可视化平台建设:架构与实践
分享大纲: 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年,数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段,基于数字孪生的水厂可视化平台的…...
【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)
要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况,可以通过以下几种方式模拟或触发: 1. 增加CPU负载 运行大量计算密集型任务,例如: 使用多线程循环执行复杂计算(如数学运算、加密解密等)。运行图…...

Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决
Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决 问题背景 在一个基于 Spring Cloud Gateway WebFlux 构建的微服务项目中,新增了一个本地验证码接口 /code,使用函数式路由(RouterFunction)和 Hutool 的 Circle…...
Angular微前端架构:Module Federation + ngx-build-plus (Webpack)
以下是一个完整的 Angular 微前端示例,其中使用的是 Module Federation 和 npx-build-plus 实现了主应用(Shell)与子应用(Remote)的集成。 🛠️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...
Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?
在大数据处理领域,Hive 作为 Hadoop 生态中重要的数据仓库工具,其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式,很多开发者常常陷入选择困境。本文将从底…...
作为测试我们应该关注redis哪些方面
1、功能测试 数据结构操作:验证字符串、列表、哈希、集合和有序的基本操作是否正确 持久化:测试aof和aof持久化机制,确保数据在开启后正确恢复。 事务:检查事务的原子性和回滚机制。 发布订阅:确保消息正确传递。 2、性…...
MySQL 索引底层结构揭秘:B-Tree 与 B+Tree 的区别与应用
文章目录 一、背景知识:什么是 B-Tree 和 BTree? B-Tree(平衡多路查找树) BTree(B-Tree 的变种) 二、结构对比:一张图看懂 三、为什么 MySQL InnoDB 选择 BTree? 1. 范围查询更快 2…...