证明E(X+Y) =E(X) + E(Y)
E(X+Y) =E(X) + E(Y)的成立是不需要X和Y相互独立的!!!
离散型随机变量
E ( X + Y ) = ∑ i = 1 n ∑ j = 1 m ( x i + y j ) P { X = x i , Y = y j } = ∑ i = 1 n ∑ j = 1 m x i P { X = x i , Y = y j } + ∑ i = 1 n ∑ j = 1 m y j P { X = x i , Y = y j } = ∑ i = 1 n x i ∑ j = 1 m P { X = x i , Y = y j } + ∑ i = 1 n y j ∑ j = 1 m P { X = x i , Y = y j } = ∑ i = 1 n x i P { X = x i } + ∑ i = 1 n y j P { Y = y j } = E ( X ) + E ( Y ) \begin{align*} E(X+Y) &= \sum_{i=1}^{n}\sum_{j=1}^{m}(x_i+y_j)P\{X=x_i,Y=y_j\}\\ &= \sum_{i=1}^{n}\sum_{j=1}^{m}x_iP\{X=x_i,Y=y_j\}+ \sum_{i=1}^{n}\sum_{j=1}^{m}y_jP\{X=x_i,Y=y_j\}\\ &=\sum_{i=1}^{n}x_i\sum_{j=1}^{m}P\{X=x_i,Y=y_j\}+\sum_{i=1}^{n}y_j\sum_{j=1}^{m}P\{X=x_i,Y=y_j\}\\ &=\sum_{i=1}^{n}x_iP\{X=x_i\}+\sum_{i=1}^{n}y_jP\{Y=y_j\}\\ &=E(X)+E(Y) \end{align*} E(X+Y)=i=1∑nj=1∑m(xi+yj)P{X=xi,Y=yj}=i=1∑nj=1∑mxiP{X=xi,Y=yj}+i=1∑nj=1∑myjP{X=xi,Y=yj}=i=1∑nxij=1∑mP{X=xi,Y=yj}+i=1∑nyjj=1∑mP{X=xi,Y=yj}=i=1∑nxiP{X=xi}+i=1∑nyjP{Y=yj}=E(X)+E(Y)
连续型随机变量
E ( X + Y ) = ∫ − ∞ + ∞ ∫ − ∞ + ∞ ( x + y ) p ( x , y ) d x d y = ∫ − ∞ + ∞ ∫ − ∞ + ∞ x p ( x , y ) d x d y + ∫ − ∞ + ∞ ∫ − ∞ + ∞ y p ( x , y ) d x d y = ∫ − ∞ + ∞ x d x ∫ − ∞ + ∞ p ( x , y ) d y + ∫ − ∞ + ∞ y d y ∫ − ∞ + ∞ p ( x , y ) d x = ∫ − ∞ + ∞ x f X ( x ) d x + ∫ − ∞ + ∞ y f Y ( y ) d y = E ( X ) + E ( Y ) \begin{align*} E(X+Y) &= \int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}(x+y)p(x,y)dxdy\\ &= \int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}xp(x,y)dxdy + \int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}yp(x,y)dxdy\\ &= \int_{-\infty}^{+\infty}xdx\int_{-\infty}^{+\infty}p(x,y)dy + \int_{-\infty}^{+\infty}ydy\int_{-\infty}^{+\infty}p(x,y)dx\\ &= \int_{-\infty}^{+\infty}xf_X(x)dx + \int_{-\infty}^{+\infty}yf_Y(y)dy\\ &= E(X) + E(Y) \end{align*} E(X+Y)=∫−∞+∞∫−∞+∞(x+y)p(x,y)dxdy=∫−∞+∞∫−∞+∞xp(x,y)dxdy+∫−∞+∞∫−∞+∞yp(x,y)dxdy=∫−∞+∞xdx∫−∞+∞p(x,y)dy+∫−∞+∞ydy∫−∞+∞p(x,y)dx=∫−∞+∞xfX(x)dx+∫−∞+∞yfY(y)dy=E(X)+E(Y)
其实离散型随机变量和连续型随机变量推导的思路是一摸一样的,只不过一个是求和一个是积分而已。需要注意的是,我们并不需要知道联合概率分布 P { X = x i , Y = y j } P\{X=x_i,Y=y_j\} P{X=xi,Y=yj}或联合概率密度 p ( x , y ) p(x,y) p(x,y),而是在过程中计算出边缘分布,这里其实可以体会到边缘分布在推导中带来的作用。
这个公式虽然非常简单,但是非常重要,因为它是一系列期望,方差,协方差公式推导的基础。
相关文章:
证明E(X+Y) =E(X) + E(Y)
E(XY) E(X) E(Y)的成立是不需要X和Y相互独立的!!! 离散型随机变量 E ( X Y ) ∑ i 1 n ∑ j 1 m ( x i y j ) P { X x i , Y y j } ∑ i 1 n ∑ j 1 m x i P { X x i , Y y j } ∑ i 1 n ∑ j 1 m y j P { X x i , Y y j …...
ClickHouse入门手册1.0
1、数据类型 1.1 整数类型: ClickHouse中整型数据均为固定长度(可以设置长度参数,但是会被忽略),整型包括有符号整型和无符号整型。 有符号整型:Int8,Int16,Int32,Int64,Int128,Int256 无符号整型:UInt8,UInt16,UI…...

10个火爆的设计素材网站推荐
所谓聪明的女人没有米饭很难做饭,设计师也是如此。如何找到优秀的设计材料是每个设计师的痛点,国内材料网站收费,但也限制使用范围和期限,大多数外国设计网站不能打开或需要特殊互联网使用,有一定的安全风险。 作为一…...

SQL注入 - CTF常见题型
文章目录 题型一 ( 字符型注入 )题型二 ( 整数型注入 )题型三 ( 信息收集SQL注入)题型四 ( 万能密码登录 )题型五 ( 搜索型注入文件读写 )题型六 (…...

android keylayout键值适配
1、通过getevent打印查看当前keyevent数字对应事件和物理码 2、dumpsys input 查看输入事件对应的 KeyLayoutFile: /system/usr/keylayout/Vendor_6080_Product_8060.kl 3、通过物理码修改键值映射,修改/system/usr/keylayout/目录下的文件...

python读取excel自动化生成sql建表语句和java实体类字段
1、首先准备一个excel文件: idtypenameidint学号namestring姓名ageint年龄sexstring性别weightdecimal(20,4)体重scoredecimal(20,4)分数 2、直接生成java字段和注释: import pandas as pddf pd.read_excel(test.xlsx, sheet_nameSheet1)for i in ran…...
Unity求向量A在平面L上的投影向量
如题:求向量A在平面L上的投影向量(图左) 即求 其实等价于求向量,那在中,,所以只需要求即可 而就是在平面L的法向量的投影坐标,所以代码就是 /// <summary>/// 求向量A在平面B上的投影向量/// </summary>/// <para…...

人机交互2——任务型多轮对话的控制和生成
1.自然语言理解模块 2.对话管理模块 3.自然语言生成模块...

【数据结构】八大排序 (三)
目录 前言: 快速排序 快速排序非递归实现 快速排序特性总结 归并排序 归并排序的代码实现 归并排序的特性总结 计数排序 计数排序的代码实现 计数排序的特性总结 前言: 前文快速排序采用了递归实现,而递归会开辟函数栈帧࿰…...

Redis 命令处理过程
我们知道 Redis 是一个基于内存的高性能键值数据库, 它支持多种数据结构, 提供了丰富的命令, 可以用来实现缓存、消息队列、分布式锁等功能。 而在享受 Redis 带来的种种好处时, 是否曾好奇过 Redis 是如何处理我们发往它的命令的呢? 本文将以伪代码的形式简单分析…...

python爬虫进阶教程之如何正确的使用cookie
文章目录 前言一、获取cookie二、程序实现三、动态获取cookie四、其他关于Python爬虫技术储备一、Python所有方向的学习路线二、Python基础学习视频三、精品Python学习书籍四、Python工具包项目源码合集①Python工具包②Python实战案例③Python小游戏源码五、面试资料六、Pytho…...

【hacker送书第4期】推荐4本Java必读书籍(各送一本)
第4期图书推荐 Java从入门到精通(第7版)内容简介参与方式 项目驱动零基础学Java内容简介参与方式 深入理解Java高并发编程内容简介参与方式 Java编程讲义内容简介参与方式 Java从入门到精通(第7版) 内容简介 《Java从入门到精通&…...

[密码学]DES
先声明两个基本概念 代换(substitution),用别的元素代替当前元素。des的s-box遵循这一设计。 abc-->def 置换(permutation),只改变元素的排列顺序。des的p-box遵循这一设计。 abc-->bac DES最核心的算法就是…...

15个超级实用的Python操作,肯定有你意想不到的!
文章目录 1)映射代理(不可变字典)2)dict 对于类和对象是不同的3) any() 和 all()4) divmod()5) 使用格式化字符串轻松检查变量6) 我们可以将浮点数转换为比率7) 用globals()和locals()显示现有的全局/本地变量8) import() 函数9) …...

GitHub上8个强烈推荐的 Python 项目
文章目录 前言1. Manim2. DeepFaceLab3. Airflow4. GPT-25. XSStrike6. 谷歌图片下载7. Gensim8. SocialMapper总结关于Python技术储备一、Python所有方向的学习路线二、Python基础学习视频三、精品Python学习书籍四、Python工具包项目源码合集①Python工具包②Python实战案例③…...
什么是依赖倒置原则
1、什么是依赖倒置原则 依赖倒置原则(Dependency Inversion Principle,DIP)是指高层模块不应该依赖于低层模块,它们都应该依赖于抽象。换句话说,具体类之间的依赖关系应该尽可能减少,而抽象类或接口之间的…...

异常数据检测 | Python实现oneclassSVM模型异常数据检测
支持向量机(SVM)的异常检测 SVM通常应用于监督式学习,但OneClassSVM[8]算法可用于将异常检测这样的无监督式学习,它学习一个用于异常检测的决策函数其主要功能将新数据分类为与训练集相似的正常值或不相似的异常值。 OneClassSVM OneClassSVM的思想来源于这篇论文[9],SVM使用…...
using meta-SQL 使用元SQL (3)
%FirstRows Syntax %FirstRows(n) Description The %FirstRows meta-SQL variable is replaced by database-specific SQL syntax to optimize retrieval of n rows. Depending on the database, this variable optimizes: FirstRows meta-SQL变量被特定于数据库的SQL语法…...

Spinnaker 基于 docker registry 触发部署
docker registry 触发部署 Spinnaker可以通过Docker镜像的变化来触发部署,这种方法允许你在Docker镜像发生变化时自动启动新的部署流程。 示例原理如下图所示: 以下是如何在Spinnaker中实现基于Docker Registry触发部署的配置流程。最终实现的效果如下…...

2023亚马逊云科技re:Invent,在开发者板块探究如何利用技术重塑业务
美国当地时间11月27日,一年一度的亚马逊云科技re:Invent大会在美国拉斯维加斯盛大开幕。这场全球云计算领域的前沿盛会,已连续12年成为引领行业的风向标。那么本次2023亚马逊云科技re:Invent大会又有哪些可玩、可看的新项目,下面就一起来瞧一…...

Flask RESTful 示例
目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题: 下面创建一个简单的Flask RESTful API示例。首先,我们需要创建环境,安装必要的依赖,然后…...

微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】
微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来,Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...

Zustand 状态管理库:极简而强大的解决方案
Zustand 是一个轻量级、快速和可扩展的状态管理库,特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...

MFC内存泄露
1、泄露代码示例 void X::SetApplicationBtn() {CMFCRibbonApplicationButton* pBtn GetApplicationButton();// 获取 Ribbon Bar 指针// 创建自定义按钮CCustomRibbonAppButton* pCustomButton new CCustomRibbonAppButton();pCustomButton->SetImage(IDB_BITMAP_Jdp26)…...

江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命
在华东塑料包装行业面临限塑令深度调整的背景下,江苏艾立泰以一场跨国资源接力的创新实践,重新定义了绿色供应链的边界。 跨国回收网络:废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点,将海外废弃包装箱通过标准…...
重启Eureka集群中的节点,对已经注册的服务有什么影响
先看答案,如果正确地操作,重启Eureka集群中的节点,对已经注册的服务影响非常小,甚至可以做到无感知。 但如果操作不当,可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...

短视频矩阵系统文案创作功能开发实践,定制化开发
在短视频行业迅猛发展的当下,企业和个人创作者为了扩大影响力、提升传播效果,纷纷采用短视频矩阵运营策略,同时管理多个平台、多个账号的内容发布。然而,频繁的文案创作需求让运营者疲于应对,如何高效产出高质量文案成…...

Scrapy-Redis分布式爬虫架构的可扩展性与容错性增强:基于微服务与容器化的解决方案
在大数据时代,海量数据的采集与处理成为企业和研究机构获取信息的关键环节。Scrapy-Redis作为一种经典的分布式爬虫架构,在处理大规模数据抓取任务时展现出强大的能力。然而,随着业务规模的不断扩大和数据抓取需求的日益复杂,传统…...
Kubernetes 网络模型深度解析:Pod IP 与 Service 的负载均衡机制,Service到底是什么?
Pod IP 的本质与特性 Pod IP 的定位 纯端点地址:Pod IP 是分配给 Pod 网络命名空间的真实 IP 地址(如 10.244.1.2)无特殊名称:在 Kubernetes 中,它通常被称为 “Pod IP” 或 “容器 IP”生命周期:与 Pod …...
高防服务器价格高原因分析
高防服务器的价格较高,主要是由于其特殊的防御机制、硬件配置、运营维护等多方面的综合成本。以下从技术、资源和服务三个维度详细解析高防服务器昂贵的原因: 一、硬件与技术投入 大带宽需求 DDoS攻击通过占用大量带宽资源瘫痪目标服务器,因此…...