当前位置: 首页 > news >正文

深度学习毕设项目 深度学习 python opencv 动物识别与检测

文章目录

  • 0 前言
  • 1 深度学习实现动物识别与检测
  • 2 卷积神经网络
    • 2.1卷积层
    • 2.2 池化层
    • 2.3 激活函数
    • 2.4 全连接层
    • 2.5 使用tensorflow中keras模块实现卷积神经网络
  • 3 YOLOV5
    • 3.1 网络架构图
    • 3.2 输入端
    • 3.3 基准网络
    • 3.4 Neck网络
    • 3.5 Head输出层
  • 4 数据集准备
    • 4.1 数据标注简介
    • 4.2 数据保存
  • 5 模型训练
    • 5.1 修改数据配置文件
    • 5.2 修改模型配置文件
    • 5.3 开始训练模型
  • 6 实现效果
    • 6.1图片效果
    • 6.2 视频效果
    • 6.3 摄像头实时效果
  • 7 最后


0 前言

🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。

为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天要分享的是

🚩 基于深度学习的动物识别算法研究与实现

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:4分
  • 工作量:4分
  • 创新点:3分


1 深度学习实现动物识别与检测

学长实现的动态检测效果,精度还是非常高的!
在这里插入图片描述


2 卷积神经网络

受到人类大脑神经突触结构相互连接的模式启发,神经网络作为人工智能领域的重要组成部分,通过分布式的方法处理信息,可以解决复杂的非线性问题,从构造方面来看,主要包括输入层、隐藏层、输出层三大组成结构。每一个节点被称为一个神经元,存在着对应的权重参数,部分神经元存在偏置,当输入数据x进入后,对于经过的神经元都会进行类似于:y=w*x+b的线性函数的计算,其中w为该位置神经元的权值,b则为偏置函数。通过每一层神经元的逻辑运算,将结果输入至最后一层的激活函数,最后得到输出output。

在这里插入图片描述

2.1卷积层

卷积核相当于一个滑动窗口,示意图中3x3大小的卷积核依次划过6x6大小的输入数据中的对应区域,并与卷积核滑过区域做矩阵点乘,将所得结果依次填入对应位置即可得到右侧4x4尺寸的卷积特征图,例如划到右上角3x3所圈区域时,将进行0x0+1x1+2x1+1x1+0x0+1x1+1x0+2x0x1x1=6的计算操作,并将得到的数值填充到卷积特征的右上角。

在这里插入图片描述

2.2 池化层

池化操作又称为降采样,提取网络主要特征可以在达到空间不变性的效果同时,有效地减少网络参数,因而简化网络计算复杂度,防止过拟合现象的出现。在实际操作中经常使用最大池化或平均池化两种方式,如下图所示。虽然池化操作可以有效的降低参数数量,但过度池化也会导致一些图片细节的丢失,因此在搭建网络时要根据实际情况来调整池化操作。

在这里插入图片描述

2.3 激活函数

激活函数大致分为两种,在卷积神经网络的发展前期,使用较为传统的饱和激活函数,主要包括sigmoid函数、tanh函数等;随着神经网络的发展,研宄者们发现了饱和激活函数的弱点,并针对其存在的潜在问题,研宄了非饱和激活函数,其主要含有ReLU函数及其函数变体

2.4 全连接层

在整个网络结构中起到“分类器”的作用,经过前面卷积层、池化层、激活函数层之后,网络己经对输入图片的原始数据进行特征提取,并将其映射到隐藏特征空间,全连接层将负责将学习到的特征从隐藏特征空间映射到样本标记空间,一般包括提取到的特征在图片上的位置信息以及特征所属类别概率等。将隐藏特征空间的信息具象化,也是图像处理当中的重要一环。

2.5 使用tensorflow中keras模块实现卷积神经网络

class CNN(tf.keras.Model):def __init__(self):super().__init__()self.conv1 = tf.keras.layers.Conv2D(filters=32,             # 卷积层神经元(卷积核)数目kernel_size=[5, 5],     # 感受野大小padding='same',         # padding策略(vaild 或 same)activation=tf.nn.relu   # 激活函数)self.pool1 = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2)self.conv2 = tf.keras.layers.Conv2D(filters=64,kernel_size=[5, 5],padding='same',activation=tf.nn.relu)self.pool2 = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2)self.flatten = tf.keras.layers.Reshape(target_shape=(7 * 7 * 64,))self.dense1 = tf.keras.layers.Dense(units=1024, activation=tf.nn.relu)self.dense2 = tf.keras.layers.Dense(units=10)def call(self, inputs):x = self.conv1(inputs)                  # [batch_size, 28, 28, 32]x = self.pool1(x)                       # [batch_size, 14, 14, 32]x = self.conv2(x)                       # [batch_size, 14, 14, 64]x = self.pool2(x)                       # [batch_size, 7, 7, 64]x = self.flatten(x)                     # [batch_size, 7 * 7 * 64]x = self.dense1(x)                      # [batch_size, 1024]x = self.dense2(x)                      # [batch_size, 10]output = tf.nn.softmax(x)return output

3 YOLOV5

我们选择当下YOLO最新的卷积神经网络YOLOv5来进行火焰识别检测。6月9日,Ultralytics公司开源了YOLOv5,离上一次YOLOv4发布不到50天。而且这一次的YOLOv5是完全基于PyTorch实现的!在我们还对YOLOv4的各种高端操作、丰富的实验对比惊叹不已时,YOLOv5又带来了更强实时目标检测技术。按照官方给出的数目,现版本的YOLOv5每个图像的推理时间最快0.007秒,即每秒140帧(FPS),但YOLOv5的权重文件大小只有YOLOv4的1/9。

目标检测架构分为两种,一种是two-stage,一种是one-stage,区别就在于 two-stage 有region proposal过程,类似于一种海选过程,网络会根据候选区域生成位置和类别,而one-stage直接从图片生成位置和类别。今天提到的 YOLO就是一种 one-stage方法。YOLO是You Only Look Once的缩写,意思是神经网络只需要看一次图片,就能输出结果。YOLO 一共发布了五个版本,其中 YOLOv1 奠定了整个系列的基础,后面的系列就是在第一版基础上的改进,为的是提升性能。

YOLOv5有4个版本性能如图所示:

在这里插入图片描述

3.1 网络架构图

在这里插入图片描述

YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。主要的改进思路如下所示:

3.2 输入端

在模型训练阶段,提出了一些改进思路,主要包括Mosaic数据增强、自适应锚框计算、自适应图片缩放;

  • Mosaic数据增强:Mosaic数据增强的作者也是来自YOLOv5团队的成员,通过随机缩放、随机裁剪、随机排布的方式进行拼接,对小目标的检测效果很不错

在这里插入图片描述

3.3 基准网络

融合其它检测算法中的一些新思路,主要包括:Focus结构与CSP结构;

3.4 Neck网络

在目标检测领域,为了更好的提取融合特征,通常在Backbone和输出层,会插入一些层,这个部分称为Neck。Yolov5中添加了FPN+PAN结构,相当于目标检测网络的颈部,也是非常关键的。

在这里插入图片描述

在这里插入图片描述

FPN+PAN的结构

在这里插入图片描述

这样结合操作,FPN层自顶向下传达强语义特征(High-Level特征),而特征金字塔则自底向上传达强定位特征(Low-Level特征),两两联手,从不同的主干层对不同的检测层进行特征聚合。

FPN+PAN借鉴的是18年CVPR的PANet,当时主要应用于图像分割领域,但Alexey将其拆分应用到Yolov4中,进一步提高特征提取的能力。

3.5 Head输出层

输出层的锚框机制与YOLOv4相同,主要改进的是训练时的损失函数GIOU_Loss,以及预测框筛选的DIOU_nms。

对于Head部分,可以看到三个紫色箭头处的特征图是40×40、20×20、10×10。以及最后Prediction中用于预测的3个特征图:

①==>40×40×255②==>20×20×255③==>10×10×255

在这里插入图片描述

  • 相关代码

    class Detect(nn.Module):stride = None  # strides computed during buildonnx_dynamic = False  # ONNX export parameterdef __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layersuper().__init__()self.nc = nc  # number of classesself.no = nc + 5  # number of outputs per anchorself.nl = len(anchors)  # number of detection layersself.na = len(anchors[0]) // 2  # number of anchorsself.grid = [torch.zeros(1)] * self.nl  # init gridself.anchor_grid = [torch.zeros(1)] * self.nl  # init anchor gridself.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output convself.inplace = inplace  # use in-place ops (e.g. slice assignment)def forward(self, x):z = []  # inference outputfor i in range(self.nl):x[i] = self.m[i](x[i])  # convbs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()if not self.training:  # inferenceif self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)y = x[i].sigmoid()if self.inplace:y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xyy[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # whelse:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xywh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # why = torch.cat((xy, wh, y[..., 4:]), -1)z.append(y.view(bs, -1, self.no))return x if self.training else (torch.cat(z, 1), x)def _make_grid(self, nx=20, ny=20, i=0):d = self.anchors[i].deviceif check_version(torch.__version__, '1.10.0'):  # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibilityyv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)], indexing='ij')else:yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()anchor_grid = (self.anchors[i].clone() * self.stride[i]) \.view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()return grid, anchor_grid
    

4 数据集准备

由于目前针对多源场景下的火焰数据并没有现成的数据集,我们使用使用Python爬虫利用关键字在互联网上获得的图片数据,爬取数据包含室内场景下的火焰、写字楼和房屋燃烧、森林火灾和车辆燃烧等场景下的火焰图片。经过筛选后留下3000张质量较好的图片制作成VOC格式的实验数据集。

深度学习图像标注软件众多,按照不同分类标准有多中类型,本文使用LabelImg单机标注软件进行标注。LabelImg是基于角点的标注方式产生边界框,对图片进行标注得到xml格式的标注文件,由于边界框对检测精度的影响较大因此采用手动标注,并没有使用自动标注软件。

考虑到有的朋友时间不足,博主提供了标注好的数据集和训练好的模型,需要请联系。

4.1 数据标注简介

通过pip指令即可安装

pip install labelimg

在命令行中输入labelimg即可打开

在这里插入图片描述

打开你所需要进行标注的文件夹,点击红色框区域进行标注格式切换,我们需要yolo格式,因此切换到yolo

在这里插入图片描述

点击Create RectBo -> 拖拽鼠标框选目标 -> 给上标签 -> 点击ok

在这里插入图片描述

4.2 数据保存

点击save,保存txt。

在这里插入图片描述

打开具体的标注文件,你将会看到下面的内容,txt文件中每一行表示一个目标,以空格进行区分,分别表示目标的类别id,归一化处理之后的中心点x坐标、y坐标、目标框的w和h。

在这里插入图片描述

5 模型训练

预训练模型和数据集都准备好了,就可以开始训练自己的yolov5目标检测模型了,训练目标检测模型需要修改两个yaml文件中的参数。一个是data目录下的相应的yaml文件,一个是model目录文件下的相应的yaml文件。

5.1 修改数据配置文件

修改data目录下的相应的yaml文件。找到目录下的voc.yaml文件,将该文件复制一份,将复制的文件重命名,最好和项目相关,这样方便后面操作。我这里修改为animal_data.yaml。

在这里插入图片描述

打开这个文件夹修改其中的参数,需要检测的类别数,这里识别有6种动物,所以这里填写6;最后填写需要识别的类别的名字(必须是英文,否则会乱码识别不出来)。到这里和data目录下的yaml文件就修改好了。

在这里插入图片描述

5.2 修改模型配置文件

由于该项目使用的是yolov5s.pt这个预训练权重,所以要使用models目录下的yolov5s.yaml文件中的相应参数(因为不同的预训练权重对应着不同的网络层数,所以用错预训练权重会报错)。同上修改data目录下的yaml文件一样,我们最好将yolov5s.yaml文件复制一份,然后将其重命名

打开yolov5s.yaml文件,主要是进去后修改nc这个参数来进行类别的修改,修改如图中的数字就好了,这里是识别两个类别。

在这里插入图片描述

至此,相应的配置参数就修改好了。

目前支持的模型种类如下所示:

在这里插入图片描述

5.3 开始训练模型

如果上面的数据集和两个yaml文件的参数都修改好了的话,就可以开始yolov5的训练了。首先我们找到train.py这个py文件。

然后找到主函数的入口,这里面有模型的主要参数。修改train.py中的weights、cfg、data、epochs、batch_size、imgsz、device、workers等参数

在这里插入图片描述

至此,就可以运行train.py函数训练自己的模型了。

训练代码成功执行之后会在命令行中输出下列信息,接下来就是安心等待模型训练结束即可。

在这里插入图片描述


6 实现效果

我们实现了图片检测,视频检测和摄像头实时检测接口,用Pyqt自制了简单UI

#部分代码
from PyQt5 import QtCore, QtGui, QtWidgetsclass Ui_Win_animal(object):def setupUi(self, Win_animal):Win_animal.setObjectName("Win_animal")Win_animal.resize(1107, 868)Win_animal.setStyleSheet("QString qstrStylesheet = \"background-color:rgb(43, 43, 255)\";\n"
"ui.pushButton->setStyleSheet(qstrStylesheet);")self.frame = QtWidgets.QFrame(Win_animal)self.frame.setGeometry(QtCore.QRect(10, 140, 201, 701))self.frame.setFrameShape(QtWidgets.QFrame.StyledPanel)self.frame.setFrameShadow(QtWidgets.QFrame.Raised)self.frame.setObjectName("frame")self.pushButton = QtWidgets.QPushButton(self.frame)self.pushButton.setGeometry(QtCore.QRect(10, 40, 161, 51))font = QtGui.QFont()font.setBold(True)font.setUnderline(True)font.setWeight(75)self.pushButton.setFont(font)self.pushButton.setStyleSheet("QPushButton{background-color:rgb(151, 191, 255);}")self.pushButton.setObjectName("pushButton")self.pushButton_2 = QtWidgets.QPushButton(self.frame)self.pushButton_2.setGeometry(QtCore.QRect(10, 280, 161, 51))font = QtGui.QFont()font.setBold(True)font.setUnderline(True)font.setWeight(75)self.pushButton_2.setFont(font)self.pushButton_2.setStyleSheet("QPushButton{background-color:rgb(151, 191, 255);}")self.pushButton_2.setObjectName("pushButton_2")self.pushButton_3 = QtWidgets.QPushButton(self.frame)self.pushButton_3.setGeometry(QtCore.QRect(10, 500, 161, 51))QtCore.QMetaObject.connectSlotsByName(Win_animal)

6.1图片效果

在这里插入图片描述

6.2 视频效果

在这里插入图片描述


6.3 摄像头实时效果

在这里插入图片描述


7 最后

相关文章:

深度学习毕设项目 深度学习 python opencv 动物识别与检测

文章目录 0 前言1 深度学习实现动物识别与检测2 卷积神经网络2.1卷积层2.2 池化层2.3 激活函数2.4 全连接层2.5 使用tensorflow中keras模块实现卷积神经网络 3 YOLOV53.1 网络架构图3.2 输入端3.3 基准网络3.4 Neck网络3.5 Head输出层 4 数据集准备4.1 数据标注简介4.2 数据保存…...

leetcode 611. 有效三角形的个数(优质解法)

代码&#xff1a; class Solution {public int triangleNumber(int[] nums) {Arrays.sort(nums);int lengthnums.length;int n0; //三元组的个数//c 代表三角形最长的那条边for (int clength-1;c>2;c--){int left0;int rightc-1;while (left<right){if(nums[left]nums[r…...

Ubuntu使用Nginx部署前端项目——记录

安装nginx 依次执行以下两条命令进行安装&#xff1a; sudo apt-get update sudo apt-get install nginx通过查看版本号查看是否安装成功&#xff1a; nginx -v补充卸载操作&#xff1a; sudo apt-get remove nginx nginx-common sudo apt-get purge nginx nginx-common su…...

小航助学题库蓝桥杯题库c++选拔赛(22年1月)(含题库教师学生账号)

需要在线模拟训练的题库账号请点击 小航助学编程在线模拟试卷系统&#xff08;含题库答题软件账号&#xff09; 需要在线模拟训练的题库账号请点击 小航助学编程在线模拟试卷系统&#xff08;含题库答题软件账号&#xff09;...

centos用户相关命令

添加用户命令&#xff1a; adduser tony.wang useradd tony.wang 这两个命令都行&#xff0c;如果已经添加了会提示已经存在。 设置密码&#xff1a; passwd tony.wang 如果需要加入sudo组&#xff1a; usermod -aG sudo tony.wang 这个命令我在CentOS7上是不行的&#x…...

智能优化算法应用:基于哈里斯鹰算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于哈里斯鹰算法无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于哈里斯鹰算法无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.哈里斯鹰算法4.实验参数设定5.算法结果6.参考…...

Stability AI 新发布SDXL Turbo:一款实时文本到图像生成模型

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…...

基于Java SSM框架+Vue实现病人跟踪治疗信息系统项目【项目源码+论文说明】

基于java的SSM框架Vue实现病人跟踪治疗信息系统演示 摘要 病人跟踪治疗信息管理系统采用B/S模式&#xff0c;促进了病人跟踪治疗信息管理系统的安全、快捷、高效的发展。传统的管理模式还处于手工处理阶段&#xff0c;管理效率极低&#xff0c;随着病人的不断增多&#xff0c;…...

js一行压缩库

js一行压缩库 压缩 JavaScript 代码通常是为了减小文件大小&#xff0c;提高加载速度。有一些常见的工具和软件可用于这个目的。以下是其中一些&#xff1a; UglifyJS&#xff1a; UglifyJS 是一个流行的 JavaScript 压缩工具&#xff0c;可以通过命令行或作为一个 npm 包来使…...

管理库存和出货的软件

随着时代的信息化越来越成熟&#xff0c;库存和出货的管理使用专门的软件变得越来越普遍。一款优秀的库存和出货管理软件应具备高效性、实时性、安全性和灵活性&#xff0c;以满足企业的日常运营需求。本文将详细介绍一款管理库存和出货的软件及其功能。 一、软件介绍 &#x…...

保护关键信息基础设施网络安全,SSL证书来助力

近年来&#xff0c;随着信息科技的飞速发展和互联网的普及应用&#xff0c;保护关键信息基础设施网络安全变得越来越迫切和重要。而随着《关键信息基础设施安全保护条例》的发布&#xff0c;保护关键信息基础设施也成为运营者必须履行的义务。SSL证书作为保护传输数据安全的重要…...

Python实现学生信息管理系统(详解版)

Python实现学生信息管理系统-详解版 个人简介实验名称&#xff1a;学生信息管理系统系统功能实验步骤详讲添加入住学生信息删除学生的住宿信息修改学生的住宿信息查询学生的住宿信息显示所有学生住宿信息显示所有请假学生的信息 运行截图展示1.主界面2.添加新的入住学生信息3.显…...

企业计算机服务器中了mallox勒索病毒如何解密,mallox勒索病毒文件恢复

随着网络技术的不断发展&#xff0c;网络安全威胁也在不断增加&#xff0c;勒索病毒攻击企业计算机服务器的事件时有发生&#xff0c;并且勒索病毒的加密形式也越来越复杂。近期&#xff0c;云天数据恢复中心陆续接到很多企业的求助&#xff0c;企业的计算机服务器遭到了mallox…...

Linux学习笔记 CenOS6.3 yum No package xxx available

环境CenOS [roothncuc ~]# cat /etc/issue CentOS release 6.2 (Final) Kernel \r on an \m安装gcc的时候提示没有包 [roothncuc ~]# sudo yum install gcc gcc-c libstdc-devel Loaded plugins: refresh-packagekit, security Setting up Install Process No package gcc a…...

【探索Linux】—— 强大的命令行工具 P.18(进程信号 —— 信号捕捉 | 信号处理 | sigaction() )

阅读导航 引言一、信号捕捉1. 内核实现信号捕捉过程2. sigaction() 函数&#xff08;1&#xff09;函数原型&#xff08;2&#xff09;参数说明&#xff08;3&#xff09;返回值&#xff08;4&#xff09;函数使用 二、可重入函数与不可重入函数1. 可重入函数条件2. 不可重入函…...

vue3+ts v-model 深度学习

<template><div><h1>我是App.vue组件</h1><div>isShpw:{{ isShow }}</div><div>text:{{ text }}</div><div><button click"isShow !isShow">开关</button></div><hr /><vModeVal…...

网络通信概述

文章目录 IP地址端口号协议三要素作用 五元组协议分层OSI七层模型TCP/IP 五层模型应用层传输层网络层数据链路层物理层 封装和分用发送方 - 封装中间转发接收方 - 分用 一般认为计算机网络就是利用通信线路和通信设备将地理上分散的、具有独立功能的多个计算机系统按不同的形式…...

<avue-crud/>,二级表头,children下字典项的dicUrl失效问题

目录 1.提出问题&#xff1a; 1.1 代码&#xff1a; 1.2 效果图&#xff1a;会发现处在children下的dicUrl失效了 2. 解决思路 3. 解决代码&#xff08;你要的都在这&#xff0c;看这里&#xff09; 1.提出问题&#xff1a; 在使用<avue-crud/>组件实现二级表头时&…...

FastApi接收不到Apifox发送的from-data字符串_解决方法

接收不到Apifox发送的from-data字符串_解决方法 问题描述解决方法弯路总结弯路描述纵观全局小结 问题描述 这里写了一个接口&#xff0c;功能是上传文件&#xff0c;接口参数是file文件和一个id字符串 gpt_router.post("/uploadfiles") async def create_upload_fi…...

Python高级数据结构——堆(Heap)

Python中的堆&#xff08;Heap&#xff09;&#xff1a;高级数据结构解析 堆是一种基于树结构的数据结构&#xff0c;具有高效的插入和删除操作。在本文中&#xff0c;我们将深入讲解Python中的堆&#xff0c;包括堆的基本概念、类型、实现方式、应用场景以及使用代码示例演示…...

生成xcframework

打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式&#xff0c;可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...

【OSG学习笔记】Day 18: 碰撞检测与物理交互

物理引擎&#xff08;Physics Engine&#xff09; 物理引擎 是一种通过计算机模拟物理规律&#xff08;如力学、碰撞、重力、流体动力学等&#xff09;的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互&#xff0c;广泛应用于 游戏开发、动画制作、虚…...

聊聊 Pulsar:Producer 源码解析

一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台&#xff0c;以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中&#xff0c;Producer&#xff08;生产者&#xff09; 是连接客户端应用与消息队列的第一步。生产者…...

Nuxt.js 中的路由配置详解

Nuxt.js 通过其内置的路由系统简化了应用的路由配置&#xff0c;使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...

DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI

前一阵子在百度 AI 开发者大会上&#xff0c;看到基于小智 AI DIY 玩具的演示&#xff0c;感觉有点意思&#xff0c;想着自己也来试试。 如果只是想烧录现成的固件&#xff0c;乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外&#xff0c;还提供了基于网页版的 ESP LA…...

是否存在路径(FIFOBB算法)

题目描述 一个具有 n 个顶点e条边的无向图&#xff0c;该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序&#xff0c;确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数&#xff0c;分别表示n 和 e 的值&#xff08;1…...

rnn判断string中第一次出现a的下标

# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...

论文笔记——相干体技术在裂缝预测中的应用研究

目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术&#xff1a;基于互相关的相干体技术&#xff08;Correlation&#xff09;第二代相干体技术&#xff1a;基于相似的相干体技术&#xff08;Semblance&#xff09;基于多道相似的相干体…...

GitHub 趋势日报 (2025年06月06日)

&#x1f4ca; 由 TrendForge 系统生成 | &#x1f310; https://trendforge.devlive.org/ &#x1f310; 本日报中的项目描述已自动翻译为中文 &#x1f4c8; 今日获星趋势图 今日获星趋势图 590 cognee 551 onlook 399 project-based-learning 348 build-your-own-x 320 ne…...