当前位置: 首页 > news >正文

2023亚太地区数学建模C题思路分析+模型+代码+论文

目录

1.2023亚太地区各题思路模型:比赛开始后,第一时间更新,获取见文末名片

3 常见数模问题常见模型分类

3.1 分类问题

3.2 优化问题

详细思路见此名片,开赛第一时间更新


1.亚太地区数学建模ABC题思路模型:9比赛开始后,第一时间更新,获取见文末名片


2.比赛时间:2023年11月23日开赛


3 常见数模问题常见模型分类

优化模型

预测模型

评价模型

3.1 分类问题


判别分析:

又称“分辨法”,是在分类确定的条件下,根据某一研究对象的各种特征值判别其类型归属问题的一种多变量统计分析方法。

其基本原理是按照一定的判别准则,建立一个或多个判别函数;用研究对象的大量资料确定判别函数中的待定系数,并计算判别指标;据此即可确定某一样本属于何类。当得到一个新的样品数据,要确定该样品属于已知类型中哪一类,这类问题属于判别分析问题。

聚类分析:

聚类分析或聚类是把相似的对象通过静态分类的方法分成不同的组别或者更多的子集,这样让在同一个子集中的成员对象都有相似的一些属性,常见的包括在坐标系中更加短的空间距离等。

聚类分析本身不是某一种特定的算法,而是一个大体上的需要解决的任务。它可以通过不同的算法来实现,这些算法在理解集群的构成以及如何有效地找到它们等方面有很大的不同。

神经网络分类:

BP 神经网络是一种神经网络学习算法。其由输入层、中间层、输出层组成的阶层型神经网络,中间层可扩展为多层。RBF(径向基)神经网络:径向基函数(RBF-Radial Basis Function)神经网络是具有单隐层的三层前馈网络。它模拟了人脑中局部调整、相互覆盖接收域的神经网络结构。感知器神经网络:是一个具有单层计算神经元的神经网络,网络的传递函数是线性阈值单元。主要用来模拟人脑的感知特征。线性神经网络:是比较简单的一种神经网络,由一个或者多个线性神经元构成。采用线性函数作为传递函数,所以输出可以是任意值。自组织神经网络:自组织神经网络包括自组织竞争网络、自组织特征映射网络、学习向量量化等网络结构形式。K近邻算法: K最近邻分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。

3.2 优化问题


线性规划:

研究线性约束条件下线性目标函数的极值问题的数学理论和方法。英文缩写LP。它是运筹学的一个重要分支,广泛应用于军事作战、经济分析、经营管理和工程技术等方面。建模方法:列出约束条件及目标函数;画出约束条件所表示的可行域;在可行域内求目标函数的最优解及最优值。

非线性规划:

非线性规划是具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。非线性规划研究一个 n元实函数在一组等式或不等式的约束条件下的极值问题,且 目标函数和约束条件至少有一个是未知量的非线性函数。目标函数和约束条件都是 线性函数的情形则属于线性规划。

整数规划:

规划中的变量(全部或部分)限制为整数,称为整数规划。若在线性模型中,变量限制为整数,则称为整数线性规划。目前所流行的求解整数规划的方法往往只适用于整数线性规划。一类要求问题的解中的全部或一部分变量为整数的数学规划。从约束条件的构成又可细分为线性,二次和非线性的整数规划。

动态规划:

包括背包问题、生产经营问题、资金管理问题、资源分配问题、最短路径问题和复杂系统可靠性问题等。

动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。

多目标规划:

多目标规划是数学规划的一个分支。研究多于一个的目标函数在给定区域上的最优化。任何多目标规划问题,都由两个基本部分组成:

详细思路见此名片,开赛第一时间更新

相关文章:

2023亚太地区数学建模C题思路分析+模型+代码+论文

目录 1.2023亚太地区各题思路模型:比赛开始后,第一时间更新,获取见文末名片 3 常见数模问题常见模型分类 3.1 分类问题 3.2 优化问题 详细思路见此名片,开赛第一时间更新 1.亚太地区数学建模ABC题思路模型:9比赛开…...

Linguistic Steganalysis in Few-Shot Scenario论文阅读笔记

TIFS期刊 A类期刊 新知识点 Introduction Linguistic Steganalysis in Few-Shot Scenario模型是个预训练方法。 评估了四种文本加密分析方法,TS-CSW、TS-RNN、Zou、SeSy,用于分析和训练的样本都由VAE-Stego生产(编码方式使用AC编码)。 实验是对比在少样…...

详细学习Pyqt5的4种项目部件(Item Widget)

Pyqt5相关文章: 快速掌握Pyqt5的三种主窗口 快速掌握Pyqt5的2种弹簧 快速掌握Pyqt5的5种布局 快速弄懂Pyqt5的5种项目视图(Item View) 快速弄懂Pyqt5的4种项目部件(Item Widget) 快速掌握Pyqt5的6种按钮 快速掌握Pyqt5的10种容器&…...

notepad++ 插件JSONView安装

1,前提 开发过程中经常需要处理json格式语句,需要对json数据格式化处理,因为使用的是虚拟机内开发,所以没法连接外网,只能在本地电脑下载插件后,然后上传到虚拟机中,进行安装使用。 2&#xf…...

AKConv:具有任意采样形状和任意数目参数的卷积核

文章目录 摘要1、引言2、相关工作3、方法3.1、定义初始采样位置3.2、可变卷积操作3.3、扩展AKConv3.3、扩展AKConv 4、实验4.1、在COCO2017上的目标检测实验4.2、在VOC 712上的目标检测实验4.3、在VisDrone-DET2021上的目标检测实验4.4、比较实验4.5、探索初始采样形状 5、分析…...

如何使用C++开发集群服务

开发集群服务需要掌握以下技术: 分布式系统原理:了解集群的概念、工作原理、负载均衡、容错等相关概念。 网络编程:掌握Socket编程和HTTP协议等。 C编程:熟练掌握C语言的基础知识和STL等常用库。 多线程编程:了解线…...

docker安装以及idea访问docker

其他目录: docker 安装环境: https://blog.csdn.net/gd898989/article/details/134570167 docker 打包java包,并运行(有空更新) url “” docker 打包vue (有空更新) url “” docker 多服务 (…...

激光切割头组件中喷嘴的作用是什么

喷嘴是一个不可忽视的部件。尽管喷嘴并不起眼,却有着重要的作用;喷嘴一般是与激光切割头同轴的,且形状多样:圆柱形、锥形、缩放型等。 喷嘴的口径尺寸时不相同的,大口径的喷嘴对聚焦来的激光束没有很严苛的要求;而口径…...

腾讯云双11活动最后一天,错过再等一年!

腾讯云双11活动已经进入尾声,距离活动结束仅剩最后一天,记得抓住这次上云好时机,错过这次,就要等到下一年才能享受到这样的优惠力度了! 活动地址: 点此直达腾讯云双11活动主会场 活动详情: 1…...

Java实现飞翔的鸟小游戏

Java实现飞翔的鸟小游戏 1.准备工作 创建一个新的Java项目命名为“飞翔的鸟”,并在src中创建一个包命名为“com.qiku.bird",在这个包内分别创建4个类命名为**“Bird”、“BirdGame”、“Column”、“Ground”,并向需要的图片**素材导入…...

Python网络请求初级篇:使用Requests库抓取和解析数据

在网络编程中,请求和接收数据是最常见的任务之一。Python的Requests库提供了丰富的功能,使得HTTP请求变得非常简单。在本文中,我们将了解如何使用Requests库发起HTTP请求,并解析返回的数据。 一、安装Requests库 首先&#xff0…...

详解API开发【电商平台API封装商品详情SKU数据接口开发】

1、电商API开发 RESTful API的设计 RESTful API是一种通过HTTP协议发送和接收数据的API设计风格。它基于一些简单的原则,如使用HTTP动词来操作资源、使用URI来标识资源、使用HTTP状态码来表示操作结果等等。在本文中,我们将探讨如何设计一个符合RESTfu…...

后端项目连接数据库-添加MyBatis依赖并检测是否成功

一.在pom.xml添加Mybatis相关依赖 在Spring Boot项目中&#xff0c;编译时会自动加载项目依赖&#xff0c;然后使用依赖包。 需要在根目录下pom.xml文件中添加Mybatis依赖项 <!-- Mybatis整合Spring Boot的依赖项 --> <dependency><groupId>org.mybatis.s…...

C++ CryptoPP使用RSA加解密

Crypto (CryptoPP) 是一个用于密码学和加密的 C 库。它是一个开源项目&#xff0c;提供了大量的密码学算法和功能&#xff0c;包括对称加密、非对称加密、哈希函数、消息认证码 (MAC)、数字签名等。Crypto 的目标是提供高性能和可靠的密码学工具&#xff0c;以满足软件开发中对…...

从实践角度深入探究数据驱动和关键字驱动测试方法!

数据驱动 数据驱动&#xff0c;指在软件测试领域当中的数据驱动测试&#xff08;Data-Driven Testing&#xff0c;简称DDT&#xff09;是⼀种软件测试⽅法&#xff0c;在不同的数据下重复执⾏相同顺序的测试步骤&#xff0c;测试脚本从数据源读取测试数据&#xff0c;⽽不使⽤…...

Unity收费对谁影响最大

Unity的收费政策对以下几类人群影响最大&#xff1a; 游戏开发商&#xff1a;Unity收费政策中最直接的影响对象就是游戏开发商。对于那些使用Unity引擎制作游戏的开发商来说&#xff0c;他们将需要考虑新的许可证费用和服务费用&#xff0c;这可能会对他们的盈利和发展产生影响…...

信号收尾.

sigaction 信号捕捉 它也是信号捕捉&#xff0c;不仅能处理普通信号还能处理实时信号&#xff0c;但我们不管实时信号 我们发现函数名和形参中结构体名一样都是sigaction&#xff0c;这在c/c中允许吗&#xff1f; 不建议&#xff0c;但是可以 signo你要捕捉几号信号 输入型参…...

maven 常用命令解析

目录 maven 是什么 Maven 目录结构 maven 常用命令解析 mvn clean mvn validate mvn compile mvn test mvn package mvn verify mvn install mvn site mvn deploy maven 是什么 Maven 是一个流行的项目管理和构建工具&#xff0c;用于帮助开发人员管理 Java 项目的…...

ESP32-Web-Server编程-JS 基础 1

ESP32-Web-Server编程-JS 基础 1 概述 前述分别在 HTML 基础 和 CSS 基础 中介绍了 HTML、CSS 的基本内容。HTML 定义了网页中包含哪些对象&#xff0c;CSS 定义了对象的显示样式。JavaScript(LiveScript)是一种运行于客户端的解释性脚本语言&#xff0c;使 HTML 页面更具动态…...

代码随想录算法训练营第23天|● 669. 修剪二叉搜索树 ● 108.将有序数组转换为二叉搜索树 ● 538.把二叉搜索树转换为累加树 ● 总结篇

108. 将有序数组转换为二叉搜索树 简单 给你一个整数数组 nums &#xff0c;其中元素已经按 升序 排列&#xff0c;请你将其转换为一棵 高度平衡 二叉搜索树。 高度平衡 二叉树是一棵满足「每个节点的左右两个子树的高度差的绝对值不超过 1 」的二叉树。 示例 1&#xff1a; …...

UE5 学习系列(二)用户操作界面及介绍

这篇博客是 UE5 学习系列博客的第二篇&#xff0c;在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下&#xff1a; 【Note】&#xff1a;如果你已经完成安装等操作&#xff0c;可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作&#xff0c;重…...

golang循环变量捕获问题​​

在 Go 语言中&#xff0c;当在循环中启动协程&#xff08;goroutine&#xff09;时&#xff0c;如果在协程闭包中直接引用循环变量&#xff0c;可能会遇到一个常见的陷阱 - ​​循环变量捕获问题​​。让我详细解释一下&#xff1a; 问题背景 看这个代码片段&#xff1a; fo…...

《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》

引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...

三维GIS开发cesium智慧地铁教程(5)Cesium相机控制

一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点&#xff1a; 路径验证&#xff1a;确保相对路径.…...

【Linux】C语言执行shell指令

在C语言中执行Shell指令 在C语言中&#xff0c;有几种方法可以执行Shell指令&#xff1a; 1. 使用system()函数 这是最简单的方法&#xff0c;包含在stdlib.h头文件中&#xff1a; #include <stdlib.h>int main() {system("ls -l"); // 执行ls -l命令retu…...

深入理解JavaScript设计模式之单例模式

目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式&#xff08;Singleton Pattern&#…...

python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)

更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...

【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验

系列回顾&#xff1a; 在上一篇中&#xff0c;我们成功地为应用集成了数据库&#xff0c;并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了&#xff01;但是&#xff0c;如果你仔细审视那些 API&#xff0c;会发现它们还很“粗糙”&#xff1a;有…...

使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台

🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...

算法:模拟

1.替换所有的问号 1576. 替换所有的问号 - 力扣&#xff08;LeetCode&#xff09; ​遍历字符串​&#xff1a;通过外层循环逐一检查每个字符。​遇到 ? 时处理​&#xff1a; 内层循环遍历小写字母&#xff08;a 到 z&#xff09;。对每个字母检查是否满足&#xff1a; ​与…...