Chatbot开发三剑客:LLAMA、LangChain和Python

聊天机器人(Chatbot)开发是一项充满挑战的复杂任务,需要综合运用多种技术和工具。在这一领域中,LLAMA、LangChain和Python的联合形成了一个强大的组合,为Chatbot的设计和实现提供了卓越支持。
首先,LLAMA是一款强大的自然语言处理工具,具备先进的语义理解和对话管理功能。它有助于Chatbot更好地理解用户意图,并根据上下文进行智能响应。LLAMA的高度可定制性使得开发者可以根据实际需求灵活调整Chatbot的语言处理能力。
LangChain作为一个全栈语言技术平台,为Chatbot提供了丰富的开发资源。它整合了多种语言技术,包括语音识别、文本处理和机器翻译,为Chatbot的多模态交互提供全面支持。LangChain的强大功能使得开发者能够轻松构建复杂而灵活的Chatbot系统。
Python作为一种通用编程语言,是Chatbot开发的理想选择。其简洁而强大的语法使得开发过程更加高效,而丰富的第三方库和生态系统为Chatbot开发提供了广泛的工具和资源。Python的跨平台性也使得Chatbot能够在不同环境中运行,实现更广泛的应用。
Chatbot开发离不开大型语言模型(LLM),LLM是一种以其实现通用语言理解和生成能力而备受关注的语言模型。LLM通过使用大量数据在训练期间学习数十亿个参数,并在训练和运行过程中消耗大量计算资源来获得这些能力。

让我们使用Langchain、llama和Python构建一个简单的聊天机器人!
在这个简单的项目中,我想创建一个关于HIV/AIDS特定主题的聊天机器人。这意味着我们发送给聊天机器人的消息,聊天机器人将尝试根据主题和消息之间的关联进行回答。但在此之前,我们必须安装和下载一些必要的组件:
1、大型语言模型
我使用的是从Hugging Face下载的META AI的LLAMA 2。
2、Langchain
用于开发由语言模型驱动的应用程序的框架
pip install langchain 3、安装Llama-cpp-python
llama.cpp库的Python实现(我尝试使用最新的llama.cpp版本,但它不起作用,所以我建议使用0.1.78稳定版本,并确保安装了C++编译器)。
pip install llama-cpp-python==0.1.78 4、导入库
from langchain.prompts importPromptTemplate
from langchain.llms importLlamaCpp
from langchain.callbacks.manager importCallbackManager
from langchain.callbacks.streaming_stdout import(
StreamingStdOutCallbackHandler
) PromptTemplate:负责创建PromptValue,这是一种根据用户输入组合动态值的对象。
llamacpp:Facebook的LLAMA模型的C/C++端口。
CallbackManager:处理来自LangChain的回调。
StreamingStdOutCallbackHandler:用于流式处理的回调处理程序。
代码
首先,我将为我的模型路径创建一个名为 “your_model_path”的变量,然后因为我只想限制主题为HIV/AIDS,所以我创建了一个名为 “chat_topic”的主题变量,并将其填充为 “HIV/AIDS”,显然你可以修改这个主题,如果你不想限制主题,可以删除 “chat_topic”并更改模板。之后,我将创建一个名为 “user_question”的变量,以接收用户输入,还有一个稍后将使用的模板。
your_model_path = "写入你的模型路径"
chat_topic = "hiv/aids"
user_question = str(input("输入你的问题:"))
template= """
请解释这个问题:“{question}”,主题是关于{topic}
""" 我将创建一个 PromptTemplate变量,该变量将使用我们之前创建的模板,并将其分配给 “prompt”变量,然后更改提示的格式并将其分配给 “final_prompt”变量。我们使用 “chat_topic”中的主题和我们之前初始化的 “user_question”中的问题。然后创建一个名为 “Callbackmanager”的变量,并将流处理程序分配给它。
prompt = PromptTemplate.from_template(template)
final_prompt = prompt.format(topic=chat_topic,question=user_question
)
CallbackManager= CallbackManager([StreamingStdOutCallbackHandler()]) 之后,让我们创建模型。
llm = LlamaCpp(model_path=your_model_path,n_ctx=6000,n_gpu_layers=512,n_batch=30,callback_manager=CallbackManager,temperature=0.9,max_tokens=4095,n_parts=1,verbose=0
) model_path:LLAMA模型的路径。
n_ctx:令牌上下文窗口,模型在生成响应时可以接受的令牌数量。
n_gpu_layers:要加载到gpu内存中的层数。
n_batch:并行处理的令牌数。
callback_manager:处理回调。
temperature:用于抽样的温度,较高的温度将导致更具创意和想象力的文本,而较低的温度将导致更准确和实际的文本。
max_tokens:生成的最大令牌数。
n_parts:要将模型分割成的部分数。
verbose:打印详细输出。
最后,调用模型并传递提示。
python "你的文件名.py" 要运行它,只需在cmd中键入上述命令。
演示


完整代码
from langchain.prompts importPromptTemplate
from langchain.llms importLlamaCpp
from langchain.callbacks.manager importCallbackManager
from langchain.callbacks.streaming_stdout import(
StreamingStdOutCallbackHandler
)
your_model_path = "write your model path"
chat_topic = "hiv/aids"
user_question = str(input("Enter your question : "))
template= """
Please explain this question : "{question}" the topic is about {topic}
"""
prompt = PromptTemplate.from_template(template)
final_prompt = prompt.format(topic=chat_topic,question=user_question
)
CallbackManager= CallbackManager([StreamingStdOutCallbackHandler()])
llm = LlamaCpp(model_path=your_model_path,n_ctx=6000,n_gpu_layers=512,n_batch=30,callback_manager=CallbackManager,temperature=0.9,max_tokens=4095,n_parts=1,verbose=0
)
llm(final_prompt)
相关文章:
Chatbot开发三剑客:LLAMA、LangChain和Python
聊天机器人(Chatbot)开发是一项充满挑战的复杂任务,需要综合运用多种技术和工具。在这一领域中,LLAMA、LangChain和Python的联合形成了一个强大的组合,为Chatbot的设计和实现提供了卓越支持。 首先,LLAMA是…...
【Spring之AOP底层源码解析】
文章目录 一、动态代理1.1、ProxyFactory1.2、Advice的分类1.3、Advisor的理解 二、创建代理对象的方式2.1、ProxyFactoryBean2.2、BeanNameAutoProxyCreator2.3、DefaultAdvisorAutoProxyCreator 三、Spring AOP的理解3.1、AOP中的概念3.2、Advice在Spring AOP中对应API3.3、T…...
【UCAS自然语言处理作业二】训练FFN, RNN, Attention机制的语言模型,并计算测试集上的PPL
文章目录 前言前馈神经网络数据组织Dataset网络结构训练超参设置 RNN数据组织&Dataset网络结构训练超参设置 注意力网络数据组织&Dataset网络结构Attention部分完整模型 训练部分超参设置 结果与分析训练集Loss测试集PPL 前言 本次实验主要针对前馈神经网络࿰…...
RabbitMQ消息模型之Sample
Hello World Hello World是官网给出的第一个模型,使用的交换机类型是直连direct,也是默认的交换机类型。 在上图的模型中,有以下概念: P:生产者,也就是要发送消息的程序C:消费者:消…...
安全技术与防火墙
目录 安全技术 防火墙 按保护范围划分: 按实现方式划分: 按网络协议划分. 数据包 四表五链 规则链 默认包括5种规则链 规则表 默认包括4个规则表 四表 查询 格式: 规则 面试题 NFS常见故障解决方法 安全技术 入侵检测系统 (Intrusion Detection Sy…...
Windows系统搭建Appium 2 和 Appium Inspector 环境
前言 自 2022 年 1 月 1 日起,Appium 核心团队不再维护 Appium 1.x。官方支持的平台驱动程序的所有最新版本均不兼容 Appium 1.x,需要 Appium 2 才能运行。 Appium 2是一个自动化移动应用程序的开源工具,它带来了以下重要改进: …...
计算机应用基础_错题集_OutLook操作题_操作系统应用题_电子表格---网络教育统考工作笔记005
6、(说明:考生单击窗口下方的“打开[Outlook]应用程序”启动Outlook) 按以下要求保存草稿。 收件人:test_xiao_ming@163.com...
2023-11-26 LeetCode每日一题(统计子串中的唯一字符)
2023-11-26每日一题 一、题目编号 828. 统计子串中的唯一字符二、题目链接 点击跳转到题目位置 三、题目描述 我们定义了一个函数 countUniqueChars(s) 来统计字符串 s 中的唯一字符,并返回唯一字符的个数。 例如:s “LEETCODE” ,则其…...
HTML新手入门笔记整理:特殊符号
音标符 音标符 字符 Construct 输出结果 ̀、 a a à ́′ a a án ˆ a a â ̃~ a a ã ̀̀、 O O Ò ́́′ O O Ó ˆ O O Ô ̃~ O O Õ 字符 显示结果 描述 实体名称 实体编号 空格 <…...
物联网中基于信任的安全性调查研究:挑战与问题
A survey study on trust-based security in Internet of Things: Challenges and issues 文章目录 a b s t r a c t1. Introduction2. Related work3. IoT security from the one-stop dimension3.1. Output data related security3.1.1. Confidentiality3.1.2. Authenticity …...
tex2D使用学习
1. 背景: 项目中使用到了纹理进行插值的加速,因此记录一些自己在学习tex2D的一些过程 2. 代码: #include "cuda_runtime.h" #include "device_launch_parameters.h" #include <assert.h> #include <stdio.h>…...
[iOS开发]UITableView的性能优化
一些基础的优化 (一)CPU 1. 用轻量级对象 比如用不到事件处理的地方,可以考虑使用 CALayer 取代 UIView CALayer * imageLayer [CALayer layer]; imageLayer.bounds CGRectMake(0,0,200,100); imageLayer.position CGPointMake(200,200…...
使用opencv实现图像滤波
1 图像滤波介绍 滤波是信号和图像处理中的基本任务之一,其旨在有选择地提取图像的某些特征,可以用于在给定应用程序的上下文中传达重要信息,例如,去除图像中的噪声、提取所需的视觉特征、图像重采样等。 1.1 图像滤波理论 图像…...
Swagger在php和java项目中的应用
Swagger在php和java项目中的应用 Swagger简介Swagger在java项目中的应用步骤常用注解 Swagger在php项目中的应用 Swagger简介 Swagger 是一个规范和完整的框架,用于生成、描述、调用和可视化 RESTful 风格的 Web 服务。 总体目标是使客户端和文件系统作为服务器以…...
java科学计数法表示数值
Background 大多数计算器及计算机程序用科学记数法显示非常大和非常小的结果;但很多时候,我们需要做一个统一,要么全部以科学计数法输出,要么就全部显示为普通计数。注意:这里对大于等于1的数据做了特殊处理࿰…...
基于C#实现树状数组
有一种数据结构是神奇的,神秘的,它展现了位运算与数组结合的神奇魅力,太牛逼的,它就是树状数组,这种数据结构不是神人是发现不了的。 一、概序 假如我现在有个需求,就是要频繁的求数组的前 n 项和&#x…...
Ubuntu Server 20.04.6下Anaconda3安装Pytorch
环境 Ubuntu 20.04.6 LTS Anaconda3-2023.09-0-Linux-x86_64.sh conda 23.7.4 Pytorch 1.11.0 安装 先创建一个工作环境,环境名叫lia: conda create -n lia python3.8环境的使用方法如下: conda activate lia # 激活环境 conda deactiv…...
C#-关于日志的功能扩展
目录 一、日志Sink(接收器) 二、Trace追踪实现日志 三、日志滚动 一、日志Sink(接收器) 安装NuGet包:Serilog Sink有很多种,这里介绍两种: Console接收器(安装Serilog.Sinks.Console); File接收器(安装…...
小程序禁止二次转发分享私密消息动态消息
第一种用法:私密消息 私密消息:运营人员分享小程序到个人或群之后,该消息只能在被分享者或被分享群内打开,不可以二次转发。 用途:主要用于不希望目标客群外的人员看到的分享信息,比如带有较高金额活动的…...
普乐蛙绵阳科博会一场VR科普航天科学盛宴科普知识
普乐蛙绵阳科普展:一场科学盛宴,点燃孩子探索欲望的火花! 普乐蛙绵阳科普展正在如火如荼地进行中,吸引了无数孩子和家长的热情参与。这场科普盛宴以独特的内外视角,让人们感受到科学的魅力,激发了孩子们对知识的渴望和…...
应用升级/灾备测试时使用guarantee 闪回点迅速回退
1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间, 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点,不需要开启数据库闪回。…...
JavaScript 中的 ES|QL:利用 Apache Arrow 工具
作者:来自 Elastic Jeffrey Rengifo 学习如何将 ES|QL 与 JavaScript 的 Apache Arrow 客户端工具一起使用。 想获得 Elastic 认证吗?了解下一期 Elasticsearch Engineer 培训的时间吧! Elasticsearch 拥有众多新功能,助你为自己…...
QMC5883L的驱动
简介 本篇文章的代码已经上传到了github上面,开源代码 作为一个电子罗盘模块,我们可以通过I2C从中获取偏航角yaw,相对于六轴陀螺仪的yaw,qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...
leetcodeSQL解题:3564. 季节性销售分析
leetcodeSQL解题:3564. 季节性销售分析 题目: 表:sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...
EtherNet/IP转DeviceNet协议网关详解
一,设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络,本网关连接到EtherNet/IP总线中做为从站使用,连接到DeviceNet总线中做为从站使用。 在自动…...
基于matlab策略迭代和值迭代法的动态规划
经典的基于策略迭代和值迭代法的动态规划matlab代码,实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...
Mysql8 忘记密码重置,以及问题解决
1.使用免密登录 找到配置MySQL文件,我的文件路径是/etc/mysql/my.cnf,有的人的是/etc/mysql/mysql.cnf 在里最后加入 skip-grant-tables重启MySQL服务 service mysql restartShutting down MySQL… SUCCESS! Starting MySQL… SUCCESS! 重启成功 2.登…...
聚六亚甲基单胍盐酸盐市场深度解析:现状、挑战与机遇
根据 QYResearch 发布的市场报告显示,全球市场规模预计在 2031 年达到 9848 万美元,2025 - 2031 年期间年复合增长率(CAGR)为 3.7%。在竞争格局上,市场集中度较高,2024 年全球前十强厂商占据约 74.0% 的市场…...
[拓扑优化] 1.概述
常见的拓扑优化方法有:均匀化法、变密度法、渐进结构优化法、水平集法、移动可变形组件法等。 常见的数值计算方法有:有限元法、有限差分法、边界元法、离散元法、无网格法、扩展有限元法、等几何分析等。 将上述数值计算方法与拓扑优化方法结合&#…...
【大模型】RankRAG:基于大模型的上下文排序与检索增强生成的统一框架
文章目录 A 论文出处B 背景B.1 背景介绍B.2 问题提出B.3 创新点 C 模型结构C.1 指令微调阶段C.2 排名与生成的总和指令微调阶段C.3 RankRAG推理:检索-重排-生成 D 实验设计E 个人总结 A 论文出处 论文题目:RankRAG:Unifying Context Ranking…...
