将不同时间点的登录状态记录转化为不同时间段的相同登录状态SQL求解
题目
有不同时间点的登录状态记录表state_log如下
请使用sql将其转化为如下表的不同时间段的相同登录状态记录
思路分析:
此类问题需要用到lag或lead函数取上下行对应的数据,然后对前后结果做比较打标签(0或1),再对标签所在列做累计求和,最后开窗按照累计值分组取时间最大最小值与状态值
代码实现:
SELECT min(stime) stime_start,max(stime) stime_end,max(state) state
from(select stime,state,stage_flag,sum(stage_flag) over(rows between unbounded preceding and current row) as accumulatefrom(select stime,state,if(state = pre_state, 0, 1) as stage_flagfrom(select stime,state,lag(state,1,1) over() pre_statefrom state_log) t1) t2) t3
group by accumulate;
代码结果分析
step1:
t1表核心点在lag(state,1,1) over() pre_state ,含义是取state列的结果,向上取1行,取不到时候设定默认值为1。
注:
lag(col,n,DEFAULT)用于统计窗口内往上第n行值
第一个参数为列名
第二个参数为往上第n行(可选,默认为1)
第三个参数为默认值(当往上第n行为NULL时候,取默认值,如不指定,则为NULL)
结果:
step2:
if(state = pre_state, 0, 1) as stage_flag
对比state与pre_state的结果,相同的赋值0
t2表结果:
step3
sum(stage_flag) over(rows between unbounded preceding and current row) as accumulate
开窗求累积到当前行的结果值
t3表结果:
step4
按累计值分组,求最终结果:
相关文章:

将不同时间点的登录状态记录转化为不同时间段的相同登录状态SQL求解
题目 有不同时间点的登录状态记录表state_log如下 请使用sql将其转化为如下表的不同时间段的相同登录状态记录 思路分析: 此类问题需要用到lag或lead函数取上下行对应的数据,然后对前后结果做比较打标签(0或1),再…...
正则表达式与SQL数据库教程
使用正则表达式通过用例查询 Postgres 数据库: 正则表达式(又名 Regex) 正则表达式是一个强大的工具,广泛用于模式匹配和文本操作。 几乎所有编程语言都支持它们,并且经常用于文本提取、搜索和匹配文本等用例。 正则…...

HTML_web扩展标签
1.表格标签 2.增强表头表现 4.表格属性(实际不常用) 结构标签: 合并单元格: 更多请查看主页...

论文阅读:Distributed Initialization for VVIRO with Position-Unknown UWB Network
前言 Distributed Initialization for Visual-Inertial-Ranging Odometry with Position-Unknown UWB Network这篇论文是发表在ICRA 2023上的一篇文章,本文提出了一种基于位置未知UWB网络的一致性视觉惯性紧耦合优化测距算法( DC-VIRO )的分布式初始化方法。 对于…...

scrapy爬虫中间件和下载中间件的使用
一、关于中间件 之前文章说过,scrapy有两种中间件:爬虫中间件和下载中间件,他们的作用时间和位置都不一样,具体区别如下: 爬虫中间件(Spider Middleware) 作用: 爬虫中间件主要负…...

手敲单链表,简单了解其运行逻辑
1. 链表 1.1 结构组成 链表是一种物理存储结构上非连续存储结构,数据元素的逻辑顺序是通过链表中的引用链接次序实现的 。 链表的结构如下图所示,是由很多个节点相互通过引用来连接而成的;每一个节点由两部分组成,分别数据域&…...

Redis RDB
基于内存的 Redis, 数据都是存储在内存中的。 那么如果重启的话, 数据就会丢失。 为了解决这个问题, Redis 提供了 2 种数据持久化的方案: RDB 和 AOF。 RDB 是 Redis 默认的持久化方案。当满足一定条件的时候, 会把当前内存中的数据写入磁盘, 生成一个快照文件 dump.rdb。Redi…...
Elasticsearch一些函数查询
1. 根据价格分组统计数量,每组区间为2000, filter_pathaggregations 设置查询结果只展示函数结果 也有date_histogram函数根据日期分组等等 GET order/_search?filter_pathaggregations {"aggs": {"hist_price": {"histogr…...

竞赛选题 : 题目:基于深度学习的水果识别 设计 开题 技术
1 前言 Hi,大家好,这里是丹成学长,今天做一个 基于深度学习的水果识别demo 这是一个较为新颖的竞赛课题方向,学长非常推荐! 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/pos…...

Linux expect命令详解
在Linux系统中,expect 是一款非常有用的工具,它允许用户自动化与需要用户输入进行交互的程序。本文将深入探讨expect命令的基本语法、使用方法以及一些最佳实践。 什么是Expect命令? expect 是一个用于自动化交互式进程的工具。它的主要功能…...
ubuntu18编译Android8的Failed to contact Jack server问题
环境 ubuntu18.04 Android8.1.0 步骤 安装环境 apt install git-core apt install gnupg apt install flex apt install bison apt install gperf apt install build-essential apt install curl apt install libc6-dev apt install libssl-dev apt install libncurses5-dev:…...
FindSecBugs支持的检测规则
很多SAST集成了FindSecBugs这个开源工具,其好处是直接对Class文件进行检测,也就是直接检测二进制问题,可以直接检测war、jar,还是非常方便的。虽然误报率较高,但是这些检测出来的安全漏洞很多是安全从业人员耳熟能详的…...

【WPF.NET开发】WPF.NET桌面应用开发概述
本文内容 为何从 .NET Framework 升级使用 WPF 进行编程标记和代码隐藏输入和命令控件布局数据绑定图形和动画文本和版式自定义 WPF 应用 Windows Presentation Foundation (WPF) 是一个与分辨率无关的 UI 框架,使用基于矢量的呈现引擎,构建用于利用现…...

态势感知是什么
在当今高度信息化的时代,信息安全风险已经成为企业、政府和个人的重要关注点。为了有效应对这些风险,态势感知成为了一种日益重要的能力。态势感知是一种基于环境的、动态、整体地洞悉安全风险的能力,是以安全大数据为基础,从全局…...
Spring MVC常用的注解, Controller注解的作用,RequestMapping注解的作用 @ResponseBody注解的作用
文章目录 Spring MVC常用的注解和注解的相关作用Controller注解的作用RequestMapping注解的作用ResponseBody注解的作用PathVariable和RequestParam的区别 Spring MVC常用的注解和注解的相关作用 RequestMapping:用于处理请求 url 映射的注解,可用于类或…...

「Verilog学习笔记」自动贩售机1
专栏前言 本专栏的内容主要是记录本人学习Verilog过程中的一些知识点,刷题网站用的是牛客网 自动贩售机中可能存在的几种金额:0,0.5,1,1.5,2,2.5,3。然后直接将其作为状态机的几种状…...

【大模型】更强的 ChatGLM3-6B 来了,开源可商用
【大模型】更强的 ChatGLM3-6B 来了,开源可商用 简介ChatGLM3-6B 环境配置环境搭建安装依赖 代码及模型权重拉取拉取 ChatGLM3-6B拉取 ChatGLM3-6B 模型权重及代码 终端测试网页测试安装 gradio加载模型并启动服务 参考 简介 ChatGLM3-6B ChatGLM3-6B 是 ChatGLM …...

Maxscript到Python转换工具教程
Maxscript到Python转换器教程 Maxscript到Python转换器采用MAXScript程序,将其解析为语法树,然后从语法树中生成等效的Python代码。通过提供python的自动翻译,帮助python程序员理解maxscript示例。 【项目状况】 将正确解析最正确的maxcript…...
Spark_日期参数解析参数-spark.sql.legacy.timeParserPolicy
在Apache Spark中,spark.sql.legacy.timeParserPolicy是一个配置选项,它控制着时间和日期解析策略。此选项主要影响如何解析日期和时间字符串。 在Spark 3.0之前的版本中,日期和时间解析使用java.text.SimpleDateFormat,它在解析…...

C语言之结构体
一.前言引入. 我们知道在C语言中有内置类型,如:整型,浮点型等。但是只有这些内置类 型还是不够的,假设我想描述学⽣,描述⼀本书,这时单⼀的内置类型是不⾏的。描述⼀个学⽣需要名字、年龄、学号、⾝⾼、体…...

Flask RESTful 示例
目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题: 下面创建一个简单的Flask RESTful API示例。首先,我们需要创建环境,安装必要的依赖,然后…...

Psychopy音频的使用
Psychopy音频的使用 本文主要解决以下问题: 指定音频引擎与设备;播放音频文件 本文所使用的环境: Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...
【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)
要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况,可以通过以下几种方式模拟或触发: 1. 增加CPU负载 运行大量计算密集型任务,例如: 使用多线程循环执行复杂计算(如数学运算、加密解密等)。运行图…...

CMake 从 GitHub 下载第三方库并使用
有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...
【Java学习笔记】BigInteger 和 BigDecimal 类
BigInteger 和 BigDecimal 类 二者共有的常见方法 方法功能add加subtract减multiply乘divide除 注意点:传参类型必须是类对象 一、BigInteger 1. 作用:适合保存比较大的整型数 2. 使用说明 创建BigInteger对象 传入字符串 3. 代码示例 import j…...

【分享】推荐一些办公小工具
1、PDF 在线转换 https://smallpdf.com/cn/pdf-tools 推荐理由:大部分的转换软件需要收费,要么功能不齐全,而开会员又用不了几次浪费钱,借用别人的又不安全。 这个网站它不需要登录或下载安装。而且提供的免费功能就能满足日常…...
Modbus RTU与Modbus TCP详解指南
目录 1. Modbus协议基础 1.1 什么是Modbus? 1.2 Modbus协议历史 1.3 Modbus协议族 1.4 Modbus通信模型 🎭 主从架构 🔄 请求响应模式 2. Modbus RTU详解 2.1 RTU是什么? 2.2 RTU物理层 🔌 连接方式 ⚡ 通信参数 2.3 RTU数据帧格式 📦 帧结构详解 🔍…...

数据结构:递归的种类(Types of Recursion)
目录 尾递归(Tail Recursion) 什么是 Loop(循环)? 复杂度分析 头递归(Head Recursion) 树形递归(Tree Recursion) 线性递归(Linear Recursion)…...

echarts使用graphic强行给图增加一个边框(边框根据自己的图形大小设置)- 适用于无法使用dom的样式
pdf-lib https://blog.csdn.net/Shi_haoliu/article/details/148157624?spm1001.2014.3001.5501 为了完成在pdf中导出echarts图,如果边框加在dom上面,pdf-lib导出svg的时候并不会导出边框,所以只能在echarts图上面加边框 grid的边框是在图里…...
13.10 LangGraph多轮对话系统实战:Ollama私有部署+情感识别优化全解析
LangGraph多轮对话系统实战:Ollama私有部署+情感识别优化全解析 LanguageMentor 对话式训练系统架构与实现 关键词:多轮对话系统设计、场景化提示工程、情感识别优化、LangGraph 状态管理、Ollama 私有化部署 1. 对话训练系统技术架构 采用四层架构实现高扩展性的对话训练…...