python跑ncnn(验证模型是否转换成功)
为了转ncnn模型是否成功,用python验证一下先
pip install ncnn
分割模型的验证代码
import ncnn
import cv2
import numpy as np# 创建ncnn的网络对象
net = ncnn.Net()# 加载ONNX模型
net.load_param('E:\\Android_Projects\\ncnn-android-deeplabv3plus-main\\app\\src\\main\\assets\\sim.param')
net.load_model('E:\\Android_Projects\\ncnn-android-deeplabv3plus-main\\app\\src\\main\\assets\\sim.bin')# 加载图像
image = cv2.imread(r'E:\cpp\ncnn-portrait-segmentation\data\1.jpg')# 调整图像尺寸为模型输入尺寸
input_size = (800, 800)
resized_image = cv2.resize(image, input_size)# 减去均值
mean_vals = (0.37802792*255.0,0.32611448*255.0,0.29480308*255.0)
norm_vals = (1 / 0.348492 / 255.0, 1 / 0.3070657 / 255.0, 1 / 0.28770673 / 255.0)
input_blob = ncnn.Mat.from_pixels(resized_image, ncnn.Mat.PixelType.PIXEL_BGR2RGB, 800, 800)
# 运行网络
input_blob.substract_mean_normalize(mean_vals, norm_vals)
ex = net.create_extractor()
# net_input = ncnn.Extractor(net)
ex.input("input", input_blob)
output_blob = ncnn.Mat()
ex.extract("output", output_blob)# 获取分类结果
# output_data = output_blob.to_numpy()# output_blob = output_blob.reshape(2,800 , 800)
output_blob = np.array(output_blob)
mask = output_blob[0]>0.8
print(800*800,';;;;;',np.sum(mask))img0 = np.array(image*mask[:,:,None],dtype=np.uint8)cv2.imshow('hh',img0)
cv2.waitKey(0)img1 = np.array(image*~mask[:,:,None],dtype=np.uint8)cv2.imshow('hh1',img1)
cv2.waitKey(0)print(1)相关文章:
python跑ncnn(验证模型是否转换成功)
为了转ncnn模型是否成功,用python验证一下先 pip install ncnn分割模型的验证代码 import ncnn import cv2 import numpy as np# 创建ncnn的网络对象 net ncnn.Net()# 加载ONNX模型 net.load_param(E:\\Android_Projects\\ncnn-android-deeplabv3plus-main\\app\…...
FL Studio 21.2.1.3859中文破解激活版2024免费下载安装图文教程
FL Studio 21.2.1.3859中文破解激活版是我见过更新迭代最快的宿主软件,没有之一。FL Studio12、FL Studio20、FL Studio21等等。有时甚至我刚刚下载好了最新版本,熟悉了新版本一些好用的操作,Fl Studio就又推出了更新的版本,而且F…...
人工智能发展史
人工智能(AI)的发展史是一段跨越数十年的旅程,涵盖了从早期理论探索到现代技术革新的广泛内容。人工智能的发展历程展示了从最初的概念探索到现代技术突破的演变。尽管经历了多次起伏,但AI领域持续进步,不断拓展其应用…...
【面试经典 150 | 二分查找】搜索插入位置
文章目录 写在前面Tag题目来源题目解读解题思路方法一:二分查找闭区间左闭右开区间开区间总结 知识总结写在最后 写在前面 本专栏专注于分析与讲解【面试经典150】算法,两到三天更新一篇文章,欢迎催更…… 专栏内容以分析题目为主,…...
DAPP开发【06】nodejs安装与npm路径更换
windows系统在执行用户命令时顺序 windows系统在执行用户命令时,若用户未给出文件的绝对路径, 则 (1)首先在当前目录下寻找相应的可执行文件、批处理文件等; (2)若找不到,再依次在系…...
数据结构奇妙旅程之顺序表和链表
꒰˃͈꒵˂͈꒱ write in front ꒰˃͈꒵˂͈꒱ ʕ̯•͡˔•̯᷅ʔ大家好,我是xiaoxie.希望你看完之后,有不足之处请多多谅解,让我们一起共同进步૮₍❀ᴗ͈ . ᴗ͈ აxiaoxieʕ̯•͡˔•̯᷅ʔ—CSDN博客 本文由xiaoxieʕ̯•͡˔•̯᷅ʔ 原创 CSDN …...
vitepress的使用
创建项目并启动项目 // 1.创建项目,直接在空项目下安装vitepress(npm/yarn等都可以,这个可以看官网,官网给了好几种安装方式) yarn add -D vitepress // 2.初始化配置项目(npm/官网也给了多种包管理工具的安装方式) npx vitepress init // 初始化命令执行完会遇到以下几个问题…...
Discuz论坛自动采集发布软件
随着网络时代的不断发展,Discuz论坛作为一个具有广泛用户基础的开源论坛系统,其采集全网文章的技术也日益受到关注。在这篇文章中,我们将专心分享通过输入关键词实现Discuz论坛的全网文章采集,同时探讨采集过程中伪原创的发布方法…...
B树在数据库的应用
B树(B-tree)是一种自平衡的树状数据结构,广泛应用于数据库和文件系统等领域,其设计的目标是提供一种高效的插入、删除和查找操作。B树的设计是为了在磁盘等存储介质上存储和操作大量的数据。 主要特点包括: 平衡性&a…...
Android 源码编译
一,虚拟机安装 1.1 进入https://cn.ubuntu.com/download中文官网下载iso镜像 1.2 这里我们下载Ubuntu 18.04 LTS 1.3虚拟VM机安装ubuntu系统,注意编译源码需要至少16G运行内存和400G磁盘空间,尽量设大点 二 配置编译环境 2.1 下载andr…...
信而泰 SSL测试方法介绍
[本文介绍在ALPS平台上进行SSL测试的内容和方法] 什么是SSL SSL全称是Secure Sockets Layer,指安全套接字协议,为基于TCP的应用层协议提供安全连接;SSL介于TCP/IP协议栈的第四层和第五层之间,广泛用于电子商务、网上银行等。 SSL…...
Redis--15--缓存穿透 击穿 雪崩
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 缓存穿透 击穿 雪崩运行速度:1 缓存穿透问题描述:如何解决: 2 缓存击穿问题描述:如何解决: 3 缓存雪崩说明:解决方案: 缓存穿透 击穿 雪崩 问题描述: 由于海量的用…...
excel表格在线编辑(开源版)
文章目录 前言一、Luckysheetvue3vite 例子如有启发,可点赞收藏哟~ 前言 本文记录好用的开源在线表格 具体如图显示 另外记录下更名后的univer~,如下图(有兴趣可自行详细了解) univer 在线思维导图 一、Luckysheet 参考git…...
17.字符串处理函数——字符串比较函数
文章目录 前言一、题目描述 二、解题 程序运行代码 总结 前言 本系列为字符串处理函数编程题,点滴成长,一起逆袭。 一、题目描述 二、解题 程序运行代码 #include<stdio.h> #include<string.h> int main() {char *str1 "hello wo…...
【面试HOT200】二叉树——深度优先搜索篇
系列综述: 💞目的:本系列是个人整理为了秋招面试的,整理期间苛求每个知识点,平衡理解简易度与深入程度。 🥰来源:材料主要源于【CodeTopHot200】进行的,每个知识点的修正和深入主要参…...
价值投资选股的方法
价值投资法是一种长期投资策略,其核心思想是寻找被市场低估的股票,即股票的市场价格低于其内在价值。这种策略认为,投资者应该关注公司的基本面,如盈利能力、成长潜力、财务状况等,而不是短期的市场波动。以下是价值投…...
java中如何将mysql里面的数据取出来然后通过stream流的方式进行数据处理代码实例?
在 Java 中使用 Stream 流的方式从 MySQL 数据库中取出数据并进行处理,你可以通过 JDBC(Java Database Connectivity)来实现。下面是一个简单的代码示例: import java.sql.*; import java.util.stream.Stream; public class MySQ…...
C++服务器 支持http、tcp protobuf、websocket,linux开源框架 零依赖轻松编译部署 Reactor
开源地址: https://github.com/crust-hub/tubekit/tree/main Github:https://github.com/gaowanlu 诚招有兴趣的小伙伴加入开发维护 Tubekit The C TCP server framework based on the Reactor model continues to implement POSIX thread pool, Epoll, non blocking IO, obj…...
1688API接口系列,1688开放平台接口使用方案(商品详情数据+搜索商品列表+商家订单类)
1688商品详情接口是指1688平台提供的API接口,用于获取商品详情信息。通过该接口,您可以获取到商品的详细信息,包括商品标题、价格、库存、描述、图片等。 要使用1688商品详情接口,您需要先申请1688的API权限,并获取ac…...
CentOS服务器网页版Rstudio-server及R包批量安装最佳实践
CentOS服务器安装网页版Rstudio-server及R包批量安装 以下为CentOS 7/8的Rstudio-server安装、配置和R包安装操作 1. 软件包安装 Centos 7安装 # 下载安装包,大小115.14 MB wget -c https://download2.rstudio.org/server/centos7/x86_64/rstudio-server-rhel-…...
Linux应用开发之网络套接字编程(实例篇)
服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...
【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器
——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的一体化测试平台,覆盖应用全生命周期测试需求,主要提供五大核心能力: 测试类型检测目标关键指标功能体验基…...
基于Flask实现的医疗保险欺诈识别监测模型
基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施,由雇主和个人按一定比例缴纳保险费,建立社会医疗保险基金,支付雇员医疗费用的一种医疗保险制度, 它是促进社会文明和进步的…...
Qt Widget类解析与代码注释
#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码,写上注释 当然可以!这段代码是 Qt …...
听写流程自动化实践,轻量级教育辅助
随着智能教育工具的发展,越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式,也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建,…...
力扣热题100 k个一组反转链表题解
题目: 代码: func reverseKGroup(head *ListNode, k int) *ListNode {cur : headfor i : 0; i < k; i {if cur nil {return head}cur cur.Next}newHead : reverse(head, cur)head.Next reverseKGroup(cur, k)return newHead }func reverse(start, end *ListNode) *ListN…...
【Nginx】使用 Nginx+Lua 实现基于 IP 的访问频率限制
使用 NginxLua 实现基于 IP 的访问频率限制 在高并发场景下,限制某个 IP 的访问频率是非常重要的,可以有效防止恶意攻击或错误配置导致的服务宕机。以下是一个详细的实现方案,使用 Nginx 和 Lua 脚本结合 Redis 来实现基于 IP 的访问频率限制…...
关于easyexcel动态下拉选问题处理
前些日子突然碰到一个问题,说是客户的导入文件模版想支持部分导入内容的下拉选,于是我就找了easyexcel官网寻找解决方案,并没有找到合适的方案,没办法只能自己动手并分享出来,针对Java生成Excel下拉菜单时因选项过多导…...
深入浅出Diffusion模型:从原理到实践的全方位教程
I. 引言:生成式AI的黎明 – Diffusion模型是什么? 近年来,生成式人工智能(Generative AI)领域取得了爆炸性的进展,模型能够根据简单的文本提示创作出逼真的图像、连贯的文本,乃至更多令人惊叹的…...
MySQL的pymysql操作
本章是MySQL的最后一章,MySQL到此完结,下一站Hadoop!!! 这章很简单,完整代码在最后,详细讲解之前python课程里面也有,感兴趣的可以往前找一下 一、查询操作 我们需要打开pycharm …...
