当前位置: 首页 > news >正文

回归预测 | MATLAB实现SMA+WOA+BOA-LSSVM基于黏菌算法+鲸鱼算法+蝴蝶算法优化LSSVM回归预测

回归预测 | MATLAB实现SMA+WOA+BOA-LSSVM基于黏菌算法+鲸鱼算法+蝴蝶算法优化LSSVM回归预测

目录

    • 回归预测 | MATLAB实现SMA+WOA+BOA-LSSVM基于黏菌算法+鲸鱼算法+蝴蝶算法优化LSSVM回归预测
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述

基本介绍

MATLAB实现SMA+WOA+BOA-LSSVM基于黏菌算法+鲸鱼算法+蝴蝶算法优化LSSVM回归预测
其中包含三种改进模型和原始模型对比
SMA-LSSVM,
WOA-LSSVM,
SFO-LSSVM,
LSSVM
四种模型对比
评价指标:R2,MSE,RMSE,MAPE训练集测试集都有

程序设计

  • 完整源码和数据获取方式:私信回复MATLAB实现SMA+WOA+BOA-LSSVM基于黏菌算法+鲸鱼算法+蝴蝶算法优化LSSVM回归预测
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据
res = xlsread('data.xlsx');%%  划分训练集和测试集
temp = randperm(103);P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%%  仿真测试
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test);%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%%  均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);%%  相关指标计算
% 决定系数 R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test -  T_sim2)^2 / norm(T_test -  mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])% 平均绝对误差 MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])% 平均相对误差 MBE
mbe1 = sum(T_sim1 - T_train) ./ M ;
mbe2 = sum(T_sim2 - T_test ) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

相关文章:

回归预测 | MATLAB实现SMA+WOA+BOA-LSSVM基于黏菌算法+鲸鱼算法+蝴蝶算法优化LSSVM回归预测

回归预测 | MATLAB实现SMAWOABOA-LSSVM基于黏菌算法鲸鱼算法蝴蝶算法优化LSSVM回归预测 目录 回归预测 | MATLAB实现SMAWOABOA-LSSVM基于黏菌算法鲸鱼算法蝴蝶算法优化LSSVM回归预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 MATLAB实现SMAWOABOA-LSSVM基于黏菌算法…...

柔性数组(Flexible Array Members)在C语言中的应用

什么是柔性数组? 在C语言中,柔性数组(Flexible Array Members,FAMs)是C99标凈引入的一种便捷的数据结构,用于声明具有可变大小数组的结构体。柔性数组通常用于当结构体的大小在编译时不确定,但…...

华为手环配置技巧

前言 华为手环作为生活健康辅助设备发挥不可忽视的作用,但每次更换手环后需要重新配置。华为手环不仅有健康监测、消息通知、天气推送、离线支付、公交卡、运动锻炼、等功能,还有倒计时、计时器、手电筒、闹钟、等小工具。下文介绍如何进行配置。 配置…...

2023全球数字贸易大赛--什么是 DID 身份,中青校园APP,全球碳交易=树根格致,多元空间=购物时代的web3.0,超喵Overview

目录 什么是 DID 身份,为什么需要 DID 1. 中心化身份的问题 2. 为什么 DID 一定会出现...

有序表常见题型

给定一个数组arr和两个整数a和b求arr中有多少个子数组累加和在a到b这个范围上返回达标的子数组数量 如【3,6,1,9,2】达标的子数组通过暴力求解的方式时间复杂度为O(N的三次方)【找每个子数组占用O&#xf…...

【开源】基于JAVA语言的桃花峪滑雪场租赁系统

项目编号: S 036 ,文末获取源码。 \color{red}{项目编号:S036,文末获取源码。} 项目编号:S036,文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 游客服务2.2 雪场管理 三、数据库设…...

【开源】基于Vue.js的图书管理系统

文末获取源码,项目编号: S 066 。 \color{red}{文末获取源码,项目编号:S066。} 文末获取源码,项目编号:S066。 目录 一、 系统介绍二、 功能模块2.1 登录注册模块2.1 图书馆模块2.2 图书类型模块2.3 图书模…...

python跑ncnn(验证模型是否转换成功)

为了转ncnn模型是否成功,用python验证一下先 pip install ncnn分割模型的验证代码 import ncnn import cv2 import numpy as np# 创建ncnn的网络对象 net ncnn.Net()# 加载ONNX模型 net.load_param(E:\\Android_Projects\\ncnn-android-deeplabv3plus-main\\app\…...

FL Studio 21.2.1.3859中文破解激活版2024免费下载安装图文教程

FL Studio 21.2.1.3859中文破解激活版是我见过更新迭代最快的宿主软件,没有之一。FL Studio12、FL Studio20、FL Studio21等等。有时甚至我刚刚下载好了最新版本,熟悉了新版本一些好用的操作,Fl Studio就又推出了更新的版本,而且F…...

人工智能发展史

人工智能(AI)的发展史是一段跨越数十年的旅程,涵盖了从早期理论探索到现代技术革新的广泛内容。人工智能的发展历程展示了从最初的概念探索到现代技术突破的演变。尽管经历了多次起伏,但AI领域持续进步,不断拓展其应用…...

【面试经典 150 | 二分查找】搜索插入位置

文章目录 写在前面Tag题目来源题目解读解题思路方法一:二分查找闭区间左闭右开区间开区间总结 知识总结写在最后 写在前面 本专栏专注于分析与讲解【面试经典150】算法,两到三天更新一篇文章,欢迎催更…… 专栏内容以分析题目为主&#xff0c…...

DAPP开发【06】nodejs安装与npm路径更换

windows系统在执行用户命令时顺序 windows系统在执行用户命令时,若用户未给出文件的绝对路径, 则 (1)首先在当前目录下寻找相应的可执行文件、批处理文件等; (2)若找不到,再依次在系…...

数据结构奇妙旅程之顺序表和链表

꒰˃͈꒵˂͈꒱ write in front ꒰˃͈꒵˂͈꒱ ʕ̯•͡˔•̯᷅ʔ大家好,我是xiaoxie.希望你看完之后,有不足之处请多多谅解,让我们一起共同进步૮₍❀ᴗ͈ . ᴗ͈ აxiaoxieʕ̯•͡˔•̯᷅ʔ—CSDN博客 本文由xiaoxieʕ̯•͡˔•̯᷅ʔ 原创 CSDN …...

vitepress的使用

创建项目并启动项目 // 1.创建项目,直接在空项目下安装vitepress(npm/yarn等都可以,这个可以看官网,官网给了好几种安装方式) yarn add -D vitepress // 2.初始化配置项目(npm/官网也给了多种包管理工具的安装方式) npx vitepress init // 初始化命令执行完会遇到以下几个问题…...

Discuz论坛自动采集发布软件

随着网络时代的不断发展,Discuz论坛作为一个具有广泛用户基础的开源论坛系统,其采集全网文章的技术也日益受到关注。在这篇文章中,我们将专心分享通过输入关键词实现Discuz论坛的全网文章采集,同时探讨采集过程中伪原创的发布方法…...

B树在数据库的应用

B树(B-tree)是一种自平衡的树状数据结构,广泛应用于数据库和文件系统等领域,其设计的目标是提供一种高效的插入、删除和查找操作。B树的设计是为了在磁盘等存储介质上存储和操作大量的数据。 主要特点包括: 平衡性&a…...

Android 源码编译

一,虚拟机安装 ​ 1.1 进入https://cn.ubuntu.com/download中文官网下载iso镜像 1.2 这里我们下载Ubuntu 18.04 LTS 1.3虚拟VM机安装ubuntu系统,注意编译源码需要至少16G运行内存和400G磁盘空间,尽量设大点 二 配置编译环境 2.1 下载andr…...

信而泰 SSL测试方法介绍

[本文介绍在ALPS平台上进行SSL测试的内容和方法] 什么是SSL SSL全称是Secure Sockets Layer,指安全套接字协议,为基于TCP的应用层协议提供安全连接;SSL介于TCP/IP协议栈的第四层和第五层之间,广泛用于电子商务、网上银行等。 SSL…...

Redis--15--缓存穿透 击穿 雪崩

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 缓存穿透 击穿 雪崩运行速度:1 缓存穿透问题描述:如何解决: 2 缓存击穿问题描述:如何解决: 3 缓存雪崩说明:解决方案: 缓存穿透 击穿 雪崩 问题描述: 由于海量的用…...

excel表格在线编辑(开源版)

文章目录 前言一、Luckysheetvue3vite 例子如有启发,可点赞收藏哟~ 前言 本文记录好用的开源在线表格 具体如图显示 另外记录下更名后的univer~,如下图(有兴趣可自行详细了解) univer 在线思维导图 一、Luckysheet 参考git…...

地震勘探——干扰波识别、井中地震时距曲线特点

目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波:可以用来解决所提出的地质任务的波;干扰波:所有妨碍辨认、追踪有效波的其他波。 地震勘探中,有效波和干扰波是相对的。例如,在反射波…...

盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来

一、破局:PCB行业的时代之问 在数字经济蓬勃发展的浪潮中,PCB(印制电路板)作为 “电子产品之母”,其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透,PCB行业面临着前所未有的挑战与机遇。产品迭代…...

模型参数、模型存储精度、参数与显存

模型参数量衡量单位 M:百万(Million) B:十亿(Billion) 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的,但是一个参数所表示多少字节不一定,需要看这个参数以什么…...

MySQL 8.0 OCP 英文题库解析(十三)

Oracle 为庆祝 MySQL 30 周年,截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始,将英文题库免费公布出来,并进行解析,帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...

《基于Apache Flink的流处理》笔记

思维导图 1-3 章 4-7章 8-11 章 参考资料 源码: https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...

什么是Ansible Jinja2

理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具,可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板,允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板,并通…...

Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?

Redis 的发布订阅(Pub/Sub)模式与专业的 MQ(Message Queue)如 Kafka、RabbitMQ 进行比较,核心的权衡点在于:简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...

uniapp 字符包含的相关方法

在uniapp中,如果你想检查一个字符串是否包含另一个子字符串,你可以使用JavaScript中的includes()方法或者indexOf()方法。这两种方法都可以达到目的,但它们在处理方式和返回值上有所不同。 使用includes()方法 includes()方法用于判断一个字…...

零知开源——STM32F103RBT6驱动 ICM20948 九轴传感器及 vofa + 上位机可视化教程

STM32F1 本教程使用零知标准板(STM32F103RBT6)通过I2C驱动ICM20948九轴传感器,实现姿态解算,并通过串口将数据实时发送至VOFA上位机进行3D可视化。代码基于开源库修改优化,适合嵌入式及物联网开发者。在基础驱动上新增…...

学习一下用鸿蒙​​DevEco Studio HarmonyOS5实现百度地图

在鸿蒙(HarmonyOS5)中集成百度地图,可以通过以下步骤和技术方案实现。结合鸿蒙的分布式能力和百度地图的API,可以构建跨设备的定位、导航和地图展示功能。 ​​1. 鸿蒙环境准备​​ ​​开发工具​​:下载安装 ​​De…...