C语言实现Cohen_Sutherland算法
前提简要:
算法简介:
编码算法是最早、最流行的线段裁剪算法,该算法采用区域检验的方法,能够快速有效地判断一条线段与裁剪窗口的位置关系,对完全接受或完全舍弃的线段无需求交,即可直接识别。
算法思想:
编码算法将整个画布分成9个区域,如下图所示:
根据线段端点所在位置,给每个端点一个四位二进制码(称为区域码)。四位区域码的4位从左到右依次表示上、下、右、左。区域码的任何为赋值为1代表端点落在相应的区域中,否则为0。
————————————————
版权声明:本文为CSDN博主「矢月」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/weixin_44397852/article/details/109015504
代码实现:
//利用数值的位运算
//实现Cohen_Sutherland算法
double xl, xr, yt, yb;//事先给出的窗口位置,四个数值均为已知
void Cohen_SutherLand(double x0, double y0, double x2, double y2)
{int c, c0, c1;double x, y;c0 = makecode(x0, y0); c1 = makecode(x2, y2);while (c0 != 0 || c1 != 0) {if (c0&c1 != 0)return;c = c0; if (c == 0)c = c1;if (c & 1 == 1) {y = y0 + (y2 - y0)*(xl - x0) / (x2 - x0);x = xl;}else if (c & 2 == 2) {y = y0 + (y2 - y0)*(xr - x0) / (x2 - x0);x = xr;}else if (c & 4 == 4) {x = x0 + (x2 - x0)*(yb - y0) / (y2 - y0);y = yb;}else if (c & 8 == 8) {x = x0 + (x2 - x0)*(yt - y0) / (y2 - y0);y = yt;}if (c == c0) {x0 = x;y0 = y;c0 = makecode(x, y);}else {x2 = x;y2 = y;c1 = makecode(x, y);}showline(x0, y0, x2, y2);//显示可见线段}
}
int makecode(double x, double y) {int c = 0;if (x < xl)c = 1;else if (x > xr)c = 2;if (y < yb)c = c + 4;else if (y > yt)c = c + 8;return c;
}相关文章:
C语言实现Cohen_Sutherland算法
前提简要: 算法简介: 编码算法是最早、最流行的线段裁剪算法,该算法采用区域检验的方法,能够快速有效地判断一条线段与裁剪窗口的位置关系,对完全接受或完全舍弃的线段无需求交,即可直接识别。 算法思想&…...
MySQL进阶_EXPLAIN重点字段解析
文章目录 第一节.准备1.1 版本信息1.2 准备 第二节.type2.1 system2.2 const2.3 eq_ref2.4 ref2.5 ref_or_null2.6 index_merge2.7 unique_subquery2.8 range2.9 index2.10 all 第三节. Extra3.1 No tables used3.2 No tables used3.3 Using where3.4 No matching min/max row3…...
视图层与模板层
视图层 1 视图函数 一个视图函数,简称视图,是一个简单的Python 函数,它接受Web请求并且返回Web响应。响应可以是一张网页的HTML内容,一个重定向,一个404错误,一个XML文档,或者一张图片. . . 是…...
MySQL数据库——触发器-案例(Insert类型、Update类型和Delete类型)
目录 表结构准备 插入数据触发器 代码 测试 修改数据触发器 代码 测试 删除数据触发器 代码 测试 通过触发器记录 tb_user 表的数据变更日志,将变更日志插入到日志表user_logs中,包含增加,修改,删除。 表结构准备 根据…...
快速创建桌面端(electron-egg)
介绍 | electron-egg electron-egg: 一个入门简单、跨平台、企业级桌面软件开发框架。 electron-egg是一个基于Electron和Egg.js的框架,可以用于快速构建跨平台的桌面应用程序。 1.兼容平台:electron-egg可以在Windows、MacOS和Linux等多个平台上运行…...
docker配置redis插件
docker配置redis插件 运行容器redis_6390 docker run -it \ --name redis_6390 \ --privileged \ -p 6390:6379 \ --network wn_docker_net \ --ip 172.18.12.19 \ --sysctl net.core.somaxconn1024 \ -e TIME_ZONE"Asia/Shanghai" -e TZ"Asia/Shanghai"…...
前端入口教程_web01
web标准 记得看! html:表示整个页面 head: titile: body: 常用标签 1.标题标签 2.段落标签 3.换行标签 4.文本格式化标签 5. 和 标签 6.图像标签 相对路径–用来插自己本地的图片 #### 绝对路径–用来插网上找的图…...
Win7 SP1 x64 Google Chrome 字体模糊
1 打开 Google Chrome ,地址栏输入 chrome://version/ ,字体模糊。 2 Microsoft Update Catalog 搜索更新 kb2670838,下载,安装,重启电脑。 3 打开 Google Chrome,地址栏输入 chrome://version/ ࿰…...
read()之后操作系统都干了什么
首先说明三个参数 file文件 buff从内存中开辟一段缓冲区用来接收读取的数据 size表示这个缓冲区的大小 有关file的参数: 状态:被打开 被关闭权限:可读可写最重要的是inode: 他包含了 文件的元数据(比如文件大小 文件类型 文件在访问前需要加…...
YoloV8改进策略:Swift Parameter-free Attention,无参注意力机制,超分模型的完美迁移
摘要 https://arxiv.org/pdf/2311.12770.pdf https://github.com/hongyuanyu/SPAN SPAN是一种超分网络模型。SPAN模型通过使用参数自由的注意力机制来提高SISR的性能。这种注意力机制能够增强重要信息并减少冗余,从而在图像超分辨率过程中提高图像质量。 具体来说,SPAN模…...
Python----练习:使用面向对象实现报名系统开发
第一步:分析哪些动作是由哪些实体发出的 学生提出报名 学生提供相关资料 学生缴费 机构收费 教师分配教室 班级增加学生信息 于是,在整个过程中,一共有四个实体:学生、机构、教师、班级!在现实中的一个具体的实…...
1.什么是html
1.什么是html什么是html? 一.基础信息 英文名字:HyperText Markup Language 中文名字:超文本标记语言 简称:html 文件格式:.htm 或 .html 结尾 作用:描述网页的语言。通过各种各样的标签,组…...
GeoServer漏洞(CVE-2023-25157)
前半部分是sql注入一些语句的测试,后面是漏洞的复现和利用 Sql注入漏洞 1.登入mysql。 2.查看默认数据库 3.使用mysql数据库 4.查看表 1.查看user 表 2.写注入语句 创建数据库 时间注入语句 布尔注入语句 报错注入语句 Geoserver漏洞ÿ…...
一个完整的手工构建的cuda动态链接库工程 03记
1, 源代码 仅仅是加入了模板函数和对应的 .cuh文件,当前的目录结构如下: icmm/gpu/add.cu #include <stdio.h> #include <cuda_runtime.h>#include "inc/add.cuh"// different name in this level for different type…...
rdf-file:SM2加解密
一:SM2简介 SM2是中国密码学算法标准中的一种非对称加密算法(包括公钥和私钥)。SM2主要用于数字签名、密钥交换和加密解密等密码学。 生成秘钥:用于生成一对公钥和私钥。公钥:用于加密数据和验证数字签名。私钥&…...
harmonyOS学习笔记之@Styles装饰器与@Extend装饰器
Styles装饰器 定义组件重用样式 自定义样式函数使用装饰器 可以定义在组件内或全局,内部优先级>外部,内部不需要function,外部需要function 定义在组件内的styles可以通过this访问组件内部的常量和状态变量,可以在styles里通过事件来改变状态变量 弊端:只支持通用属性和通用…...
GateWay的路由与全局过滤器
1.断言工厂 我们在配置文件中写的断言规则只是字符串,这些字符串会被Predicate Factory读取并处理,转变为路由判断的条件 例如Path/user/**是按照路径匹配,这个规则是由 org.springframework.cloud.gateway.handler.predicate.PathRoutePr…...
MuleSoft 中的细粒度与粗粒度 API
API 设计是一个令人着迷的话题。API 设计的一个重要方面是根据 API 的特性和功能确定正确的“大小”。所有建筑师都必须在某个时候解决过这个问题。在本文中,我将尝试对我们在获得“正确的”粒度 API 之前需要考虑的各种参数进行一些深入的探讨: 可维护…...
【笔记】2023最新Python安装教程(Windows 11)
🎈欢迎加群交流(备注:csdn)🎈 ✨✨✨https://ling71.cn/hmf.jpg✨✨✨ 🤓前言 作为一名经验丰富的CV工程师,今天我将带大家在全新的Windows 11系统上安装Python。无论你是编程新手还是老手&…...
Android Wifi断开问题分析和802.11原因码
Android Wifi连接和断链分析思路。 1.密码错误导致的连接失败 2.关联被拒绝 3.热点未回复AUTH_RSP或者STA未收到 AUTH_RSP 4.热点未回复ASSOC_RSP或者STA未收到ASSOC_RSP 5.DHCP FAILURE 6.发生roaming 7.AP发送了DEAUTH帧导致断开连接 8.被AP踢出,这个原因…...
关于nvm与node.js
1 安装nvm 安装过程中手动修改 nvm的安装路径, 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解,但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后,通常在该文件中会出现以下配置&…...
聊聊 Pulsar:Producer 源码解析
一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台,以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中,Producer(生产者) 是连接客户端应用与消息队列的第一步。生产者…...
五年级数学知识边界总结思考-下册
目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解:由来、作用与意义**一、知识点核心内容****二、知识点的由来:从生活实践到数学抽象****三、知识的作用:解决实际问题的工具****四、学习的意义:培养核心素养…...
基于数字孪生的水厂可视化平台建设:架构与实践
分享大纲: 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年,数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段,基于数字孪生的水厂可视化平台的…...
【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)
1.获取 authorizationCode: 2.利用 authorizationCode 获取 accessToken:文档中心 3.获取手机:文档中心 4.获取昵称头像:文档中心 首先创建 request 若要获取手机号,scope必填 phone,permissions 必填 …...
MySQL 索引底层结构揭秘:B-Tree 与 B+Tree 的区别与应用
文章目录 一、背景知识:什么是 B-Tree 和 BTree? B-Tree(平衡多路查找树) BTree(B-Tree 的变种) 二、结构对比:一张图看懂 三、为什么 MySQL InnoDB 选择 BTree? 1. 范围查询更快 2…...
ubuntu22.04 安装docker 和docker-compose
首先你要确保没有docker环境或者使用命令删掉docker sudo apt-get remove docker docker-engine docker.io containerd runc安装docker 更新软件环境 sudo apt update sudo apt upgrade下载docker依赖和GPG 密钥 # 依赖 apt-get install ca-certificates curl gnupg lsb-rel…...
归并排序:分治思想的高效排序
目录 基本原理 流程图解 实现方法 递归实现 非递归实现 演示过程 时间复杂度 基本原理 归并排序(Merge Sort)是一种基于分治思想的排序算法,由约翰冯诺伊曼在1945年提出。其核心思想包括: 分割(Divide):将待排序数组递归地分成两个子…...
k8s从入门到放弃之Pod的容器探针检测
k8s从入门到放弃之Pod的容器探针检测 在Kubernetes(简称K8s)中,容器探测是指kubelet对容器执行定期诊断的过程,以确保容器中的应用程序处于预期的状态。这些探测是保障应用健康和高可用性的重要机制。Kubernetes提供了两种种类型…...
使用python进行图像处理—图像滤波(5)
图像滤波是图像处理中最基本和最重要的操作之一。它的目的是在空间域上修改图像的像素值,以达到平滑(去噪)、锐化、边缘检测等效果。滤波通常通过卷积操作实现。 5.1卷积(Convolution)原理 卷积是滤波的核心。它是一种数学运算,…...
