当前位置: 首页 > news >正文

【数据中台】开源项目(5)-Amoro

介绍

        Amoro is a Lakehouse management system built on open data lake formats. Working with compute engines including Flink, Spark, and Trino, Amoro brings pluggable and self-managed features for Lakehouse to provide out-of-the-box data warehouse experience, and helps data platforms or products easily build infra-decoupled, stream-and-batch-fused and lake-native architecture。
Amoro定位是一个搭建在 Apache Iceberg之上的流式湖仓服务,流式强调向实时能力的拓展,服务则强调管理、标准化度量,以及其他可以抽象到基础软件中的湖仓一体能力。
通过 Amoro,用户可以在 Flink、Spark、Trino 等引擎上实现更加优化的 CDC、流式更新、OLAP 等功能, 结合数据湖高效的离线处理能力,Arctic 能够服务于更多流批混用的场景;同时,Arctic 的结构自优化、并发冲突解决以及标准化的湖仓管理功能,将有效减少用户在数据湖管理和优化上的负担。
开源地址: GitHub - NetEase/amoro: Amoro is a Lakehouse management system built on open data lake formats.

Amoro架构

The architecture of Amoro is as follows:
The core components of Amoro include:
  • AMS: Amoro Management Service provides Lakehouse management features, like self-optimizing, data expiration, etc. It also provides a unified catalog service for all computing engines, which can also be combined with existing metadata services.
  • Plugins: Amoro provides a wide selection of external plugins to meet different scenarios.
  • Optimizers: The self-optimizing execution engine plugin asynchronously performs merging, sorting, deduplication, layout optimization, and other operations on all type table format tables.
  • Terminal: SQL command-line tools, provide various implementations like local Spark and Kyuubi.
  • LogStore: Provide millisecond to second level SLAs for real-time data processing based on message queues like Kafka and Pulsar.

支持的格式

Amoro can manage tables of different table formats, similar to how MySQL/ClickHouse can choose different storage engines. Amoro meets diverse user needs by using different table formats. Currently, Amoro supports three table formats:
  • Iceberg format: means using the native table format of the Apache Iceberg, which has all the features and characteristics of Iceberg.
  • Mixed-Iceberg format: built on top of Iceberg format, which can accelerate data processing using LogStore and provides more efficient query performance and streaming read capability in CDC scenarios.
  • Mixed-Hive format: has the same features as the Mixed-Iceberg tables but is compatible with a Hive table. Support upgrading Hive tables to Mixed-Hive tables, and allow Hive’s native read and write methods after upgrading.

支持的引擎

Iceberg format

Iceberg format tables use the engine integration method provided by the Iceberg community. For details, please refer to: Iceberg Docs.

Paimon format

Paimon format tables use the engine integration method provided by the Paimon community. For details, please refer to: Paimon Docs.

Mixed format

Amoro support multiple processing engines for Mixed format as below:
Processing Engine
Version
Batch Read
Batch Write
Batch Overwrite
Streaming Read
Streaming Write
Create Table
Alter Table
Flink
1.15.x, 1.16.x and 1.17.x
Spark
3.1, 3.2, 3.3
Hive
2.x, 3.x
Trino
406

应用场景

Self-managed streaming Lakehouse

Amoro makes it easier for users to handle the challenges of writing to a real-time data lake, such as ingesting append-only event logs or CDC data from databases. In these scenarios, the rapid increase of fragment and redundant files cannot be ignored. To address this issue, Amoro provides a pluggable streaming data self-optimizing mechanism that automatically compacts fragment files and removes expired data, ensuring high-quality table queries while reducing system costs.

Stream-and-batch-fused data pipeline

Whether in the AI or BI business field , the requirement for real-time analysis is becoming increasingly high. The traditional approach of using one streaming job to complete all data processing from the source to the end is no longer applicable. There is an increasing demand for layered construction of streaming data pipeline, and the traditional layered construction approach based on message queues can cause a inconsistency problem between the streaming and batch data processing. Building a unified stream-and-batch-fused pipeline based on new data lake formats is the future direction for solving these problems. Amoro fully leverages the characteristics of the new data lake table formats about unified streaming and batch processing, not only ensuring the quality of data in the streaming pileline but also enhancing critical features such as incremental reading for CDC data and streaming dimension table association, helping users to build a stream-and-batch-fused data pipeline.

Cloud-native Lakehouse

Currently, most data platforms and products are tightly coupled with their underlying infrastructure(such as the storage layer). The migration of infrastructure, such as switching to cloud-native OSS, may require extensive adaptation efforts or even be impossible. However, Amoro provides an infra-decoupled, lake-native architecture built on top of the infrastructure. This allows products based on Amoro to interact with the underlying infrastructure through a unified interface (Amoro Catalog service), protecting upper-layer products from the impact of infrastructure switch.

相关文章:

【数据中台】开源项目(5)-Amoro

介绍 Amoro is a Lakehouse management system built on open data lake formats. Working with compute engines including Flink, Spark, and Trino, Amoro brings pluggable and self-managed features for Lakehouse to provide out-of-the-box data warehouse experience,…...

_WorldSpaceLightPos0的含义 UNITY SHADER

_WorldSpaceLightPos0 为当前平行光的方向,方向是从光源到照射的方向。 因此,如果要算法线和平行光之间的夹角, 则需要首先将归一化的_WorldSpaceLightPos0去负数。这样才能继续去计算。 也就是: fixed3 reflectdirnormalize…...

iOS不越狱自动挂机

自动挂机在电脑上或者安卓手机上都相对容易,而在不越狱的iOS设备上还是有点难度的。 此方法不是我原创,详情见: 【苹果党福音,ios也能用的挂机脚本】 https://www.bilibili.com/video/BV1sv4y1P7TL/?share_sourcecopy_web&v…...

智能优化算法应用:基于鼠群算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于鼠群算法无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于鼠群算法无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.鼠群算法4.实验参数设定5.算法结果6.参考文献7.MATLAB…...

FL Studio中如何录音的技巧,让你的声音更加出众哦!

​ Hey小伙伴们!今天我要和大家分享一下在FL Studio中如何录音的技巧,让你的声音更加出众哦! 编曲软件FL Studio 即“Fruity Loops Studio ”,也就是众所熟知的水果软件, 全能音乐制作环境或数字音频工作站&#xff0…...

前端React基础面试题

1,说说react里面bind函数与箭头函数 bind 由于在类中,采用的是严格模式,所以事件回调的时候会丢失this指向,指向的undefined,需要使用bind来给函数绑定上当前实例的this指向。 箭头函数的this指向上下文,所以永久能拿到当前组件实例的。this指向我们可以完美的使用箭头…...

【1day】致远A6系统任意文件下载漏洞学习

注:该文章来自作者日常学习笔记,请勿利用文章内的相关技术从事非法测试,如因此产生的一切不良后果与作者无关。 目录 一、漏洞描述 二、影响版本 三、资产测绘 四、漏洞复现...

朝花夕拾华山平台流水账

2022年8月25日,我加入了诚迈科技(南京),加入了华山平台。 跟我一起入职平台的还有三个小伙伴:小帅、小阳、小甘。 小帅能力很强,前后端都会,入职各种考试工具人。 小阳毕业没多久,一…...

云原生周刊:K8s 的 YAML 技巧 | 2023.12.4

开源项目推荐 Helmfile Helmfile 是用于部署 Helm Chart 的声明性规范。其功能有: 保留图表值文件的目录并维护版本控制中的更改。将 CI/CD 应用于配置更改。定期同步以避免环境偏差。 Docketeer 一款 Docker 和 Kubernetes 开发人员工具,用于管理容…...

Leetcode.2477 到达首都的最少油耗

题目链接 Leetcode.2477 到达首都的最少油耗 rating : 2012 题目描述 给你一棵 n n n 个节点的树(一个无向、连通、无环图),每个节点表示一个城市,编号从 0 0 0 到 n − 1 n - 1 n−1 ,且恰好有 n − 1 n - 1 n−…...

sizeof()、strlen()、length()、size()的区别(笔记)

​ 上面的笔记有点简陋,可以看一下下面这个博主的: c/c中sizeof()、strlen()、length()、size()详解和区别_csize,sizeof,length_xuechanba的博客-CSDN博客...

Redis击穿(热点key失效)

Redis击穿是指在高并发情况下,一个键在缓存中过期失效时,同时有大量请求访问该键,导致所有请求都落到数据库上,对数据库造成压力。这种情况下,数据库可能无法及时处理这些请求,导致性能下降甚至崩溃。 为了…...

分类预测 | Matlab实现OOA-CNN-SVM鱼鹰算法优化卷积支持向量机分类预测

分类预测 | Matlab实现OOA-CNN-SVM鱼鹰算法优化卷积支持向量机分类预测 目录 分类预测 | Matlab实现OOA-CNN-SVM鱼鹰算法优化卷积支持向量机分类预测分类效果基本描述程序设计参考资料 分类效果 基本描述 1.Matlab实现OOA-CNN-SVM鱼鹰算法优化卷积支持向量机分类预测&#xff0…...

class文件结构

文章目录 1. 常量池集合2. 访问标志3. 字段表集合4. 方法表集合5. 属性表集合 成员变量(非静态)的赋值过程:1. 默认初始化 2. 显示初始化/代码块中初始化 3. 构造器中初始化 4. 有了对象后对象。属性或者对象。方法的方式对成员变量进行赋值 …...

多重背包问题 一句话说清楚“二进制拆分“

目录 区别: 一句话说清楚: 板子: 区别: 得先懂完全背包问题完全背包问题 非零基础-CSDN博客 都是让背包内价值最大。 完全背包问题每种物品可以取无数次。而多重背包问题每件取的次数有限。 都可以用的最挫的方法就是0~k件去…...

nodejs微信小程序+python+PHP本科生优秀作业交流网站的设计与实现-计算机毕业设计推荐

通过软件的需求分析已经获得了系统的基本功能需求,根据需求,将本科生优秀作业交流网站功能模块主要分为管理员模块。管理员添加系统首页、个人中心、用户管理、作业分类管理、作业分享管理、论坛交流、投诉举报、系统管理等操作。 随着信息化社会的形成…...

使用git出现的问题

保证 首先保证自己的git已经下载 其次保证自己的gitee账号已经安装并且已经生成ssh公钥 保证自己要push的代码在要上传的文件夹内并且配置文件等都在父文件夹(也就是文件没有套着文件) 问题 1 $ git push origin master gitgitee.com: Permission de…...

rk3568 适配PCIE(二)

rk3568 适配pcie3.0 PCIe(Peripheral Component Interconnect Express)是一种用于连接计算机主板和其他设备的高速串行总线接口。PCIe 2.0和PCIe 3.0是两个不同版本的PCIe规范,它们在以下几个方面有所不同: 带宽:PCIe 2.0的理论带宽为每条通道5 Gbps,而PCIe 3.0的理论带…...

Java基础 进制

在Java中,可以使用不同的进制表示整数常量和字面量。 十进制(Decimal):默认为十进制,不需要添加前缀。例如:int num 10;二进制(Binary):以0b或0B作为前缀表示二进制。例…...

springboot中@Builder注解的详细用法实例,跟数据库结合。

在Spring Boot中,Builder注解是Lombok库提供的一个注解,用于生成带有Builder模式支持的构造器方法。通过Builder注解,可以简化对象的创建过程,特别适用于需要设置多个属性的情况。 下面是一个使用Builder注解的示例: …...

利用最小二乘法找圆心和半径

#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...

python打卡day49

知识点回顾&#xff1a; 通道注意力模块复习空间注意力模块CBAM的定义 作业&#xff1a;尝试对今天的模型检查参数数目&#xff0c;并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...

Unity3D中Gfx.WaitForPresent优化方案

前言 在Unity中&#xff0c;Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染&#xff08;即CPU被阻塞&#xff09;&#xff0c;这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案&#xff1a; 对惹&#xff0c;这里有一个游戏开发交流小组&…...

在rocky linux 9.5上在线安装 docker

前面是指南&#xff0c;后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...

解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八

现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet&#xff0c;点击确认后如下提示 最终上报fail 解决方法 内核升级导致&#xff0c;需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...

连锁超市冷库节能解决方案:如何实现超市降本增效

在连锁超市冷库运营中&#xff0c;高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术&#xff0c;实现年省电费15%-60%&#xff0c;且不改动原有装备、安装快捷、…...

STM32F4基本定时器使用和原理详解

STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...

学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1

每日一言 生活的美好&#xff0c;总是藏在那些你咬牙坚持的日子里。 硬件&#xff1a;OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写&#xff0c;"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...

【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具

第2章 虚拟机性能监控&#xff0c;故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令&#xff1a;jps [options] [hostid] 功能&#xff1a;本地虚拟机进程显示进程ID&#xff08;与ps相同&#xff09;&#xff0c;可同时显示主类&#x…...

ArcGIS Pro制作水平横向图例+多级标注

今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作&#xff1a;ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等&#xff08;ArcGIS出图图例8大技巧&#xff09;&#xff0c;那这次我们看看ArcGIS Pro如何更加快捷的操作。…...