当前位置: 首页 > news >正文

相关教程test

第一天

主题:LLM初体验

上午:
一,大模型的发展背景和模型演进
  • 数据增长和算力提升
  • LSTM到BERT到LLM的参数巨变
  • 最新paper解读(根据授课时间,选择最近的核心paper进行解读)
二,大模型核心阶段的认识和理解
  • 预训练(CLM,Scaling Law等)
  • 对齐(SFT,RW,RLHF)
  • 微调(p-tuning,p-tuningV2,Lora等)
下午:
三,大模型核心架构详解Transformer
  • 基本组成部分
  • self-attention中的QKV的含义
  • self-attention中scale的作用
  • self-attention的时间复杂度问题
四,业界为何使用LLM,应该具备的条件?
  • 传统bert-fintuning模式的典型弊端
  • 离线需求场景下的llm提示工程
  • 什么数据规模可以考虑微调
  • 什么阶段应该考虑预训练和对齐工程

第二天

主题:必要的提示工程

上午:
一,为什么提示工程是必要的?
  • 探索chatGPT的能力上限
  • 构建领域能力测试模块(术语解释,常识理解,逻辑逻辑,业务问题退化)
  • 提示工程中大模型的指令测试,稳定性测试,准确率测试目的与方法
二,提示工程的标准设计方案
  • 基本结构组成(角色,问题,示例,输出格式,注意点)
  • 与业务结合的CoT badcase分析方法
  • 基于RAG的业务知识注入
  • 基于reAct的相关工具使用
  • Agent的适应场景和设计方案
下午:
三,提示工程案例剖析:

《领域知识注入的常见问题和解决方案》

  • 如何选择知识库的embedding方法
  • 如何设计业务上的“相似度度量”
四,前沿提示工程的paper深入解读:
  • THE UNLOCKING SPELL ON BASE LLMS: RETHINKING ALIGNMENT VIA IN-CONTEXT LEARNING (来自艾伦实验室)
  • Automatic Prompt Optimization with “Gradient Descent” and Beam Search( 来自微软研究院)

第三天

主题:大模型微调

上午:
一,常见微调方法的技术原理解析:
  • p-tuning,p-tuningv2
  • lora,adalora,qlora等
二,微调数据的分布控制和增强方法
  • 如何进行微调数据的分布控制
  • 基于CoT的数据逻辑增强
  • 将self-instruct应用于微调数据
下午:
三,大模型微调案例剖析

《微调过程的常见问题和解决方案》

  • 幻觉问题划分和对应的解决方案
  • 复读机问题的本质原因和解决方案
四,前沿微调技术paper的深入解读:
  • SLoRA: Federated Parameter Efficient Fine-Tuning of Language Models (来自南加州大学)
  • A Comparative Study between Full-Parameter and LoRA-based Fine-Tuning on Chinese Instruction Data for Instruction Following Large Language Model( Lora技术在中文语料下的对比报告)

第四天

主题:大模型的评估与推理加速

上午:
一,大模型的评估指标与方法
  • 算法角度的效果和效率评估指标
  • 业务指标的设计融合与正相关
  • 多层次指标设计的重要性
二,大模型分布式方法与工具
  • 数据并行,模型并行,流水线并行,序列并行
  • 工具:Deepspeed,Accelerate,Triton
下午:
三,大模型训练平台设计的重要性
  • 数据处理流程和算力调度
  • 算法团队整体效率提升的关键
四,总结与展望
  • 整体总结
  • 未来大模型技术展望(架构改进,多模态等)
  • Monarch Mixer: A Simple Sub-Quadratic GEMM-Based Architecture (来自neurIPS2023 斯坦福大学)
  • Retentive Network: A Successor to Transformer for Large Language Models(来自微软研究院)
  • 互动讨论

讲师介绍:

周老师
  • LLM实战专家,8年算法从业经历,曾就职于字节,快手,宜信等互联网公司,主导算法团队AIGC方向的探索和落地,对大模型预训练,对齐,微调具有丰富工程实践经验。

相关文章:

相关教程test

第一天 主题:LLM初体验 上午: 一,大模型的发展背景和模型演进 数据增长和算力提升LSTM到BERT到LLM的参数巨变最新paper解读(根据授课时间,选择最近的核心paper进行解读) 二,大模型核心阶段…...

mysql知识分享(包含安装卸载)(一)

如果博客有错误,请佬指正。 目录 注意:打开cmd时要有管理员身份打开,重要 为何使用数据库? 数据库的相关概念 关系型数据库 关系型数据库设计规则 表,记录,字段 表的关联关系 一对一关联 一对多关系 …...

Google Guava 反射工具使用详解

文章目录 反射类操作方法操作字段操作获取注解 反射 在 Guava 中,反射(Reflection)模块提供了一些用于简化反射操作的工具类和方法。通过 Guava 的反射模块,您可以方便地进行类、方法、字段的操作、获取注解信息等。下面详细介绍…...

MySql MVCC 详解

注意以下操作都是以InnoDB引擎为操作基准。 一,前置知识准备 1,MVCC简介 MVCC 是多版本并发控制(Multiversion Concurrency Control)的缩写。它是一种数据库事务管理技术,用于解决并发访问数据库的问题。MVCC 通过创…...

工业机器视觉megauging(向光有光)使用说明书(三,轻量级的visionpro)

下来我们说说第二个相机的添加: 第一步,点击相机二,如下: 第二步,点击:加载工具组.xml,加载toolgroupxml2目录下的:工具组.xml 注意,一个相机只能用一个toolgroupxml,第…...

Linux 环境下,jdbc连接mysql问题

1. 下载MySQL的JDBC驱动: 从MySQL官网下载最新的MySQL Connector/J,并将其解压到某个目录,比如/usr/local/mysql/。 2. 将JDBC驱动添加到类路径: 将JDBC驱动添加到类路径,可以使用以下命令: export CLA…...

Python读写txt文件数据

🎈 博主:一只程序猿子 🎈 博客主页:一只程序猿子 博客主页 🎈 个人介绍:爱好(bushi)编程! 🎈 创作不易:如喜欢麻烦您点个👍或者点个⭐! &#x1f…...

Linux虚假唤醒

为什么会有虚假唤醒一说。Linux内核这么强大,怎么会出现这样的情况?一直以来也很困惑,看了下文链接中的介绍后,豁然开朗。 从计算机设计的角度,如果一层解决不了,那就再多加一层。推算到这里,就…...

倒计时模块复习

经典回顾倒计时 倒计时的基本布局介绍。 一个内容区域和一个输入区域,内容区域进行划分 直接使用flex布局会更快一点。 js代码 我们利用一下模块化思想,直接把获得时间这个功能写成一个函数。方便后续的调用 function getTime() {const date new Date…...

k8s(三): 基本概念-ReplicaSet与Deployment

PeplicaSet ReplicaSet 的目的是维护一组在任何时候都处于运行状态的 Pod 副本的稳定集合,通常用来保证给定数量的、完全相同的 Pod 的可用性。 最佳实践 Deployment 是一个可以拥有 ReplicaSet 并使用声明式方式在服务器端完成对 Pod 滚动更新的对象。 尽管 Rep…...

Linux 的介绍和云服务器上web 程序部署

目录 一.linux的介绍 1.1linux是什么 1.2linux的发展历程 1.3linux发行版 二.Linux环境搭建 2.1阿里云-云服务器配置 2.2使用终端软件连接Linux 三.操作Linux,部署web程序 3.1Linux指令 3.2部署web程序 第一步:认识yum 第二步:安装…...

Oauth2.0 学习

OAuth 2.0 服务器端通常通过验证每次请求中的访问令牌(access token)的方式来确保其合法性和有效性。以下是一些通常采用的验证方法: Token Validation Endpoint: OAuth 2.0 规范允许实现一个专门的令牌验证端点,称为 Token Valid…...

Elasticsearch:什么是向量数据库?

向量数据库定义 向量数据库是将信息存储为向量的数据库,向量是数据对象的数值表示,也称为向量嵌入。 它利用这些向量嵌入的强大功能来对非结构化数据和半结构化数据(例如图像、文本或传感器数据)的海量数据集进行索引和搜索。 向…...

rename--统一的PRF

基本概念 将ARF/PRF进行合并,合同之后的不见,称之为统一的PRF(Physical Register File);存储的是speculative的,以及正确的(retire)寄存器值; 使用free list,存储PRF中,哪些寄存器是…...

010-editor破解(1)

查看字符串 使用rabin2 -z /home/burning/010editor/010editor | tee 22.txt 查看字符串。 6698 0x003ba380 0x007ba380 68 69 .rodata ascii The password you entered is for an earlier version of this program. 6699 0x003ba3c8 0x007ba3c8 70 71 .rodata ascii You will…...

Ubuntur编译ROS报错:error PCL requires C++14 or above

ubuntu20.04 编译ROS包 报错: error: PCL requires C14 or above: 修改Cmakelists.txt文件: set(CMAKE_CXX_STANDARD 14) 再次编译成功....

17.认识下Docker之docker的核心原理(2)

1.容器-我的小世界 不知道大家看没看过小说《完美时间》,里面石昊经常进入一个小世界在里面与世隔绝的修炼或者战斗,总之就是在一个完全封闭的空间里做他想做的事情而与外界隔离,不受侵扰。通过前面的分析我们知道,Namepace让应用…...

【EasyExcel实践】万能导出,一个接口导出多张表以及任意字段(可指定字段顺序)

文章目录 前言正文一、POM依赖二、核心Java文件2.1 自定义表头注解 ExcelColumnTitle2.2 自定义标题头的映射接口2.3 自定义有序map存储表内数据2.4 表头工厂2.5 表flag和表头映射枚举2.6 测试用的实体2.6.1 NameAndFactoryDemo2.6.2 StudentDemo 2.7 启动类2.8 测试控制器 三、…...

代码随想录算法训练营第四十二天 _ 动态规划_01背包问题、416.分割等和子集。

学习目标: 动态规划五部曲: ① 确定dp[i]的含义 ② 求递推公式 ③ dp数组如何初始化 ④ 确定遍历顺序 ⑤ 打印递归数组 ---- 调试 引用自代码随想录! 60天训练营打卡计划! 学习内容: 二维数组处理01背包问题 听起来…...

市场上好用的aspera替代方案,你知道哪些

Aspera作为一个高速文件传输方案曾经非常受欢迎,但是其昂贵的价格却限制了许多用户的选择,因此市场上出现了众多Aspera替代方案,本文将会介绍市场上最好的Aspera替代方案。 最近几年,网络传输已成为现代商业运作中必不可少的一部…...

8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂

蛋白质结合剂(如抗体、抑制肽)在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上,高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术,但这类方法普遍面临资源消耗巨大、研发周期冗长…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

c++ 面试题(1)-----深度优先搜索(DFS)实现

操作系统:ubuntu22.04 IDE:Visual Studio Code 编程语言:C11 题目描述 地上有一个 m 行 n 列的方格,从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子,但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...

OkHttp 中实现断点续传 demo

在 OkHttp 中实现断点续传主要通过以下步骤完成,核心是利用 HTTP 协议的 Range 请求头指定下载范围: 实现原理 Range 请求头:向服务器请求文件的特定字节范围(如 Range: bytes1024-) 本地文件记录:保存已…...

数据链路层的主要功能是什么

数据链路层(OSI模型第2层)的核心功能是在相邻网络节点(如交换机、主机)间提供可靠的数据帧传输服务,主要职责包括: 🔑 核心功能详解: 帧封装与解封装 封装: 将网络层下发…...

从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)

设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile,新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...

BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践

6月5日,2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席,并作《智能体在安全领域的应用实践》主题演讲,分享了在智能体在安全领域的突破性实践。他指出,百度通过将安全能力…...

10-Oracle 23 ai Vector Search 概述和参数

一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI,使用客户端或是内部自己搭建集成大模型的终端,加速与大型语言模型(LLM)的结合,同时使用检索增强生成(Retrieval Augmented Generation &#…...

Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?

在大数据处理领域,Hive 作为 Hadoop 生态中重要的数据仓库工具,其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式,很多开发者常常陷入选择困境。本文将从底…...

Python+ZeroMQ实战:智能车辆状态监控与模拟模式自动切换

目录 关键点 技术实现1 技术实现2 摘要: 本文将介绍如何利用Python和ZeroMQ消息队列构建一个智能车辆状态监控系统。系统能够根据时间策略自动切换驾驶模式(自动驾驶、人工驾驶、远程驾驶、主动安全),并通过实时消息推送更新车…...