数字图像处理(实践篇) 十六 基于分水岭算法的图像分割
目录
一 分水岭算法
二 利用OpenCV实现分水岭算法的过程
三 实践
一 分水岭算法
基于任何灰度图像都可以视为地形表面,其中高强度表示山峰和山丘,而低强度表示山谷。首先,开始用不同颜色的水(标签)填充每个孤立的山谷(局部最小值)。随着水位的上升,根据附近的山峰(梯度),来自不同山谷的水,显然具有不同的颜色,将开始合并。为了避免这种情况,我们需要在水汇合的位置建造水坝或者屏障。如果继续注水和建造屏障的工作,直到所有的山峰都在水下。然后,之前创建的屏障会提供细分的结果。这就是分水岭背后的“哲学”。
利用OpenCV实现分水岭算法的过程如下:
①首先,找到前景的近似估计值。可以使用 Otsu 的二值化操作实现。
②通过形态学处理对原始的图像img进行降噪操作。
注意:靠近物体中心的区域是前景,而远离物体的区域是背景。不确定的唯一区域是硬币的边界区域。
③通过膨胀操作获取“确定的背景区域Background region"。
④利用距离变换函数cv2.distanceTransform()对图像进行处理,并对其结果进行阈值分割,得到”确定前景区域Front reign“。
⑤获取未知的区域UN。UN =img - Background region - Front reign。
⑥利用cv.connectedComponents()实现图像的标注工作和对标注结果进行修正。
⑦使用分水岭分割函数cv.watershed()完成对图像的分割。
二 利用OpenCV实现分水岭算法的过程
①Otsu 的二值化操作的结果
img = cv2.imread(img_path)
im = img.copy()
gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
②图像降噪操作的结果。
kernel = np.ones((3, 3), np.uint8)
opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=2)
③确定的背景区域Background region。
sure_bg = cv2.dilate(opening, kernel, iterations=3)
④确定的前景区域。
dist_transform = cv2.distanceTransform(opening, cv2.DIST_L2, 5)
ret, sure_fg = cv2.threshold(dist_transform, 0.7 * dist_transform.max(), 255, 0)
sure_fg = np.uint8(sure_fg)
⑤unknown区域。
unknown = cv2.subtract(sure_bg, sure_fg)
⑥利用cv.connectedComponents()实现图像的标注,并且对标注结果进行修正。
ret, markers = cv2.connectedComponents(sure_fg)
# Add one to all labels so that sure background is not 0, but 1
markers = markers + 1
# Now, mark the region of unknown with zero
markers[unknown == 255] = 0
⑦使用分水岭分割函数cv.watershed()完成对目标的分割处理。
markers = cv2.watershed(im, markers)
# The boundary region will be marked with -1.
三 实践
- 代码
import numpy as np
import cv2
import matplotlib.pyplot as plt
def dealImg(img):b, g, r = cv2.split(img)img_rgb = cv2.merge([r, g, b])return img_rgb
def dealImageResult(img_path):img = cv2.imread(img_path)im = img.copy()gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)ret, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)# noise removalkernel = np.ones((3, 3), np.uint8)opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=2)# sure background areasure_bg = cv2.dilate(opening, kernel, iterations=3)# sure foreground areadist_transform = cv2.distanceTransform(opening, cv2.DIST_L2, 5)ret, sure_fg = cv2.threshold(dist_transform, 0.7 * dist_transform.max(), 255, 0)sure_fg = np.uint8(sure_fg)unknown = cv2.subtract(sure_bg, sure_fg)# Marker labellingret, markers = cv2.connectedComponents(sure_fg)# Add one to all labels so that sure background is not 0, but 1markers = markers + 1# Now, mark the region of unknown with zeromarkers[unknown == 255] = 0markers = cv2.watershed(im, markers)# The boundary region will be marked with -1.im[markers == -1] = [255, 255, 0]fig = plt.figure(figsize=(10, 10))img = dealImg(img)im = dealImg(im)titles = ["im", " OTSU", "open", "sure_bg", "sure_fg", "unknown", "result_im"]images = [img, thresh, opening, sure_bg, sure_fg, unknown, im]for i in range(7):plt.subplot(2, 4, i + 1), plt.imshow(images[i], "gray")plt.title("{}".format(titles[i]), fontsize=20, ha='center')plt.xticks([]), plt.yticks([])#plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=0.3, hspace=0)# plt.tight_layout()plt.show()fig.savefig('test_results.jpg', bbox_inches='tight')
if __name__ == '__main__':dealImageResult("test.jpg")pass
- 效果图
从上图中可以看出,对于某些硬币,它们接触的区域可以被正确分割开,而对于某些硬币,则没有分割开。
前文回顾
入门篇目录
数字图像处理(入门篇)一 图像的数字化与表示
数字图像处理(入门篇)二 颜色空间
数字图像处理(入门篇)三 灰度化
数字图像处理(入门篇)四 像素关系
数字图像处理(入门篇)五 图像数据预处理之颜色空间转换
数字图像处理(入门篇)六 图像数据预处理之坐标变化
数字图像处理(入门篇)七 图像数据预处理之灰度变化
数字图像处理(入门篇)八 图像数据预处理之直方图
数字图像处理(入门篇)九 图像数据预处理之滤波
数字图像处理(入门篇)十 边缘检测
数字图像处理(入门篇)十一 形态学处理
数字图像处理(入门篇)十二 自适应阈值分割
数字图像处理(入门篇)十三 仿射变换
数字图像处理(入门篇)十四 透视变换
实践篇目录
数字图像处理(实践篇)一 将图像中的指定目标用bBox框起来吧!
数字图像处理(实践篇)二 画出图像中目标的轮廓
数字图像处理(实践篇)三 将两张图像按照指定比例融合
数字图像处理(实践篇)四 图像拼接-基于SIFT特征点和RANSAC方法
数字图像处理(实践篇)五 使用Grabcut算法进行物体分割
数字图像处理(实践篇)六 利用hough变换进行直线检测
数字图像处理(实践篇)七 利用霍夫变换进行圆环检测
数字图像处理(实践篇)八 Harris角点检测
数字图像处理(实践篇)九 基于边缘的模板匹配
数字图像处理(实践篇)十 图像质量检测
数字图像处理(实践篇)十一 图像中的条形码解析
数字图像处理(实践篇)十二 基于小波变换的图像降噪
数字图像处理(实践篇)十三 数据增强之给图像添加噪声!
数字图像处理(实践篇)十四 图像金字塔
数字图像处理(实践篇)十五 基于傅里叶变换的高通滤波和低通滤波
相关文章:

数字图像处理(实践篇) 十六 基于分水岭算法的图像分割
目录 一 分水岭算法 二 利用OpenCV实现分水岭算法的过程 三 实践 一 分水岭算法 基于任何灰度图像都可以视为地形表面,其中高强度表示山峰和山丘,而低强度表示山谷。首先,开始用不同颜色的水(标签)填充每个孤立的山…...
快速学习PyQt5的高级自定义控件
Pyqt5相关文章: 快速掌握Pyqt5的三种主窗口 快速掌握Pyqt5的2种弹簧 快速掌握Pyqt5的5种布局 快速弄懂Pyqt5的5种项目视图(Item View) 快速弄懂Pyqt5的4种项目部件(Item Widget) 快速掌握Pyqt5的6种按钮 快速掌握Pyqt5的10种容器&…...

Python中读写(解析)JSON文件的深入探究
目录 一、引言 二、如何读取JSON文件 三、如何写入JSON文件 四、如何解析JSON字符串 五、错误处理和异常处理 六、使用第三方库提高效率 七、总结 一、引言 在Python中,我们经常使用JSON(JavaScript Object Notation)格式来存储和传输…...
我获取股票和期货数据的常用函数
记录一下获取数据所使用的函数,以防止遗忘和方便查找。 # 获取掘金的数据 # 需要打开并登陆掘金终端 def get_data_juejin(symbol"bu2112",start"2021-8-1",end"2021-8-30 23:00:00",frequency"1800s",fields"eob,sy…...
高并发场景下的httpClient使用优化技巧
1. 背景 我们有个业务,会调用其他部门提供的一个基于http的服务,日调用量在千万级别。使用了httpclient来完成业务。之前因为qps上不去,就看了一下业务代码,并做了一些优化,记录在这里。 先对比前后:优化…...
用php上传图片到阿里云oss
如果你想自动创建目录并将文件上传到新的目录下,你可以使用阿里云 OSS 的 createObject 方法来实现。下面是更新后的示例代码: php <?php require_once __DIR__ . /vendor/autoload.php; // 引入 SDKuse OSS\OssClient; use OSS\Core\OssException;…...
服务器适合哪些使用场景_Maizyun
服务器适合哪些使用场景 在当今的数字化时代,服务器作为互联网基础设施的核心组件,被广泛应用于各种场景。本文将探讨服务器适合哪些使用场景。 一、Web服务器 Web服务器是服务器中最常见的一种,用于托管和运行网站。它负责处理来自客户端…...

发布“最强”AI大模型,股价大涨,吊打GPT4的谷歌股票值得投资吗?
来源:猛兽财经 作者:猛兽财经 谷歌在AI领域的最新进展,引发投资者关注 在谷歌-C(GOOGL)谷歌-A(GOOG)昨日发布了最新的AI大模型Gemini后,其股价就出现了大幅上涨,更是引发了投资者的密切关注&a…...

年度工作总结怎么写?掌握这些年终总结万能公式,让你的报告出彩无比!
光阴似箭,日月如梭,时间总是不疾不徐地向前奔去,转眼就来到了2023年的最后一个月,12月一到,上班族和打工人又要开始忙活工作总结的事情~ 工作总结,不仅是一年工作的回顾,更是未来规划的起点。你…...
常用Nmap脚本
端口扫描类脚本 Nmap是一款非常流行的端口扫描工具,它可以帮助渗透测试工程师识别目标网络上开放的端口,并提供有关这些端口的详细信息。Nmap还提供了一系列基于脚本的功能,这些脚本可以扩展Nmap的功能,使其能够更深入地探测目标网…...

在pom.xml中添加maven依赖,但是类里面import导入的时候报错
问题: Error:(27, 8) java: 类TestKuDo是公共的, 应在名为 TestKuDo.java 的文件中声明 Error:(7, 23) java: 程序包org.apache.kudu不存在 Error:(8, 23) java: 程序包org.apache.kudu不存在 Error:(9, 23) java: 程序包org.apache.kudu不存在 Error:(10, 30) jav…...
【NEON】学习资料汇总
一、资料链接 Guide : http://www.heenes.de/ro/material/arm/DEN0018A_neon_programmers_guide_en.pdf csdn博文1,基础案例: https://blog.csdn.net/kakasxin/article/details/103912832? csdn博文2,内部函数: ht…...
java中ReentrantLock的实现原理是什么?
ReentrantLock 的实现原理主要涉及到两个关键概念:同步器(Sync)和 AQS(AbstractQueuedSynchronizer,抽象队列同步器)。 ReentrantLock 使用 AQS 来实现可重入锁的机制。AQS 是 Java 并发包中的一个抽象基类…...
C语言精选——选择题Day40
第一题 1. int a[10] {2,3,5}, 请问a[3]及a[3]之后的数值是() A:不确定的数据 B:5 C:0 D:0xf f f f f f f f 答案及解析 C 数组的不完全初始化,会自动把没初始化的部分初始化为0; 第…...
大屏适配方案一scale()
背景 在做大屏可视化项目的时候,一般设计稿会设计成1920 * 1080,但是页面写死1920 * 1080在2k、4k等分辨率的屏幕下是不适配的。 方案一:css3的缩放属性transform以及scale() 在做项目之前我们需要搞清楚客户的数据可视化平台需要在什么屏幕…...

WordPress免费插件大全清单【2023最新】
WordPress已经成为全球范围内最受欢迎的网站建设平台之一。要让您的WordPress网站更具功能性、效率性,并提供卓越的用户体验,插件的选择与使用变得至关重要。 WordPress插件的作用 我们先理解一下插件在WordPress生态系统中的作用。插件是一种能够为Wo…...
支付宝小程序接口传参会默认排序
一:问题 描述:最近项目中的接口都加了签名,在同步到支付宝小程序上时,发现有些接口报错,经过排查,导致报错的原因是因为传参顺序被支付宝小程序默认排序了,比如: 设置的原始参数&a…...

Numpy数组的运算(第7讲)
Numpy数组的运算(第7讲) 🍹博主 侯小啾 感谢您的支持与信赖。☀️ 🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ…...

node后端接口无法插入数据为emoji的表情的问题
原因 emoji的表情一般是这样的\xF0\x9F\x98\x80或者是\xF0\x9F\x98 ,事实上 一般数据库的utf8的编码类型都是能保存\xF0\x9F\x98 但是不能保存\xF0\x9F\x98\x80这种样的emoji,要将数据库编码格式为utf8mb4 也就是utf8的超集 另外,除了 数据库…...

Conda常用命令总结
使用conda或anaconda的小伙伴们都知道,图形界面时不靠谱的,而在命令行下,所有的操作就会稳定很多,且极少出现问题。因此,熟记conda的命令行就变得十分有用。但对于我这样近50岁依旧奋斗在代码第一线的大龄程序员而已&a…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度
一、引言:多云环境的技术复杂性本质 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时,基础设施的技术债呈现指数级积累。网络连接、身份认证、成本管理这三大核心挑战相互嵌套:跨云网络构建数据…...

简易版抽奖活动的设计技术方案
1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...

UE5 学习系列(三)创建和移动物体
这篇博客是该系列的第三篇,是在之前两篇博客的基础上展开,主要介绍如何在操作界面中创建和拖动物体,这篇博客跟随的视频链接如下: B 站视频:s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...
电脑插入多块移动硬盘后经常出现卡顿和蓝屏
当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时,可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案: 1. 检查电源供电问题 问题原因:多块移动硬盘同时运行可能导致USB接口供电不足&#x…...
sqlserver 根据指定字符 解析拼接字符串
DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...

新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案
随着新能源汽车的快速普及,充电桩作为核心配套设施,其安全性与可靠性备受关注。然而,在高温、高负荷运行环境下,充电桩的散热问题与消防安全隐患日益凸显,成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...

PL0语法,分析器实现!
简介 PL/0 是一种简单的编程语言,通常用于教学编译原理。它的语法结构清晰,功能包括常量定义、变量声明、过程(子程序)定义以及基本的控制结构(如条件语句和循环语句)。 PL/0 语法规范 PL/0 是一种教学用的小型编程语言,由 Niklaus Wirth 设计,用于展示编译原理的核…...
Linux离线(zip方式)安装docker
目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1:修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本:CentOS 7 64位 内核版本:3.10.0 相关命令: uname -rcat /etc/os-rele…...

人机融合智能 | “人智交互”跨学科新领域
本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...
动态 Web 开发技术入门篇
一、HTTP 协议核心 1.1 HTTP 基础 协议全称 :HyperText Transfer Protocol(超文本传输协议) 默认端口 :HTTP 使用 80 端口,HTTPS 使用 443 端口。 请求方法 : GET :用于获取资源,…...