【概率方法】重要性采样
从一个极简分布出发
假设我们有一个关于随机变量 X X X 的函数 f ( X ) f(X) f(X),满足如下分布
| p ( X ) p(X) p(X) | 0.9 | 0.1 |
|---|---|---|
| f ( X ) f(X) f(X) | 0.1 | 0.9 |
如果我们要对 f ( X ) f(X) f(X) 的期望 E p [ f ( X ) ] \mathbb{E}_p[f(X)] Ep[f(X)] 进行估计,并且我们有一些从 p p p 中采样的样本,那么朴素的想法是,直接关于 p p p 采样,把采样到的值加起来求平均
E p [ f ( X ) ] = 1 n ∑ i f i ( X ) \mathbb{E}_p[f(X)] = \frac{1}{n} \sum_{i} f_i(X) Ep[f(X)]=n1i∑fi(X)
但是问题在于,如果采样的样本个数比较少,很可能采样的全都是 0.1,那么和理论值 0.9*0.1+0.1*0.9=0.18 就相差很大。也就是这样的估计方法方差过大。
这个问题的本质原因在于 f ( X ) f(X) f(X)和 p ( X ) p(X) p(X)形状的不匹配:在 f ( X ) f(X) f(X)贡献比较大的值的位置, p ( X ) p(X) p(X)采样的概率很小,一旦采样个数过少, f ( X ) f(X) f(X)不足以产生足够的对 E p [ f ( X ) ] \mathbb{E}_p[f(X)] Ep[f(X)]的贡献,因此产生很大的方差
有什么解决办法呢?
重要性采样
如果我们可以换另一个已知的简单的采样分布 q ( X ) q(X) q(X),使得它和 ∣ p ( X ) f ( X ) ∣ |p(X)f(X)| ∣p(X)f(X)∣匹配,那么方差就能够变小。(这也是此方法命名为重要性采样的原因)
我们可以给积分里面上下乘以一个 q(X),就可以变换成关于 q q q 求另一个表达式的期望
E p [ f ( X ) ] = ∫ X p ( X ) f ( X ) d X = ∫ X q ( X ) p ( X ) q ( X ) f ( X ) d X = E q [ p ( X ) q ( X ) f ( X ) ] \mathbb{E}_p[f(X)] = \int_X p(X)f(X) dX=\int_X q(X) \frac{p(X)}{q(X)}f(X) dX= \mathbb{E}_q[\frac{p(X)}{q(X)}f(X)] Ep[f(X)]=∫Xp(X)f(X)dX=∫Xq(X)q(X)p(X)f(X)dX=Eq[q(X)p(X)f(X)]
由于 p , q , f p,q,f p,q,f 的值我们都是可以计算的,假设 q q q 也可以正常采样,那么这个期望是可以求的。
真的有用?
我们不妨取 q ( X ) q(X) q(X) 和 ∣ p ( X ) f ( X ) ∣ |p(X)f(X)| ∣p(X)f(X)∣ 完美匹配,即 q ( X ) = 0.5 , X = x i , ∀ i q(X) = 0.5, \ \ X=x_i,\ \forall i q(X)=0.5, X=xi, ∀i
然后我们关于 q q q 采样,求 p ( X ) q ( X ) f ( X ) \frac{p(X)}{q(X)}f(X) q(X)p(X)f(X) 的期望
| q ( X ) q(X) q(X) | 0.5 | 0.5 |
|---|---|---|
| p ( X ) q ( X ) f ( X ) \frac{p(X)}{q(X)}f(X) q(X)p(X)f(X) | 0.18 | 0.18 |
好了,你随便从 q q q 采,能和理论值不一样算我输

无论怎么取,我们估计的期望 E ^ q [ p ( X ) q ( X ) f ( X ) ] = 0.18 ∗ 0.5 + 0.18 ∗ 0.5 = 0.18 \mathbb{\hat{E}}_q[\frac{p(X)}{q(X)}f(X)] =0.18 * 0.5 + 0.18 * 0.5 = 0.18 E^q[q(X)p(X)f(X)]=0.18∗0.5+0.18∗0.5=0.18 和理论值完美符合。
重要性采样真的是有用的。不过这只是一个极端的例子,实际上要取这样的一个 q q q 也并不是很容易,还是要到具体领域问题里面具体分析。
相关文章:
【概率方法】重要性采样
从一个极简分布出发 假设我们有一个关于随机变量 X X X 的函数 f ( X ) f(X) f(X),满足如下分布 p ( X ) p(X) p(X)0.90.1 f ( X ) f(X) f(X)0.10.9 如果我们要对 f ( X ) f(X) f(X) 的期望 E p [ f ( X ) ] \mathbb{E}_p[f(X)] Ep[f(X)] 进行估计࿰…...
MyBatis 四大核心组件之 StatementHandler 源码解析
🚀 作者主页: 有来技术 🔥 开源项目: youlai-mall 🍃 vue3-element-admin 🍃 youlai-boot 🌺 仓库主页: Gitee 💫 Github 💫 GitCode 💖 欢迎点赞…...
用Guava做本地缓存示例
缓存的作用 提升系统性能,暂时在内存中保存业务系统的数据处理结果,并且等待下次访问使用 本地缓存和分布式缓存 缓存分为本地缓存与分布式缓存。本地缓存为了保证线程安全问题,一般使用ConcurrentMap的方式保存在内存之中,而常…...
Django多对多ManyToManyField字段
Django是一个支持多对多关系的Web框架,可以在模型中定义多对多关系。多对多关系通常涉及两个实体之间的复杂交互,例如用户和组之间的关系,或者课程和学生之间的关系。在Django中,可以使用ManyToManyField字段来定义多对多关系。 …...
docker-centos中基于keepalived+niginx模拟主从热备完整过程
文章目录 一、环境准备二、主机1、环境搭建1.1 镜像拉取1.2 创建网桥1.3 启动容器1.4 配置镜像源1.5 下载工具包1.6 下载keepalived1.7 下载nginx 2、配置2.1 配置keepalived2.2 配置nginx2.2.1 查看nginx.conf2.2.2 修改index.html 3、启动3.1 启动nginx3.2 启动keepalived 4、…...
软件科技成果鉴定测试需提供哪些材料?
为了有效评估科技成果的质量,促进科技理论向实际应用转化,所以需要进行科技成果鉴定测试。申请鉴定的科技成果范围是指列入国家和省、自治区、直辖市以及国务院有关部门科技计划内的应用技术成果,以及少数科技计划外的重大应用技术成果。 …...
办公word-从不是第一页添加页码
总结 实际需要注意的是,分隔符、分节符和分页符并不是一个含义 分隔符包含其他两个;分页符:是增加一页;分节符:指将文档分为几部分。 从不是第一页插入页码1步骤 1,插入默认页码 自己可以测试时通过**…...
Android笔记(十七):PendingIntent简介
PendingIntent翻译成中文为“待定意图”,这个翻译很好地表示了它的涵义。PendingIntent描述了封装Intent意图以及该意图要执行的目标操作。PendingIntent封装Intent的目标行为的执行是必须满足一定条件,只有条件满足,才会触发意图的目标操作。…...
为 Compose MultiPlatform 添加 C/C++ 支持(2):在 jvm 平台使用 jni 实现桌面端与 C/C++ 互操作
前言 在上篇文章中我们已经介绍了实现 Compose MultiPlatform 对 C/C 互操作的基本思路。 并且先介绍了在 kotlin native 平台使用 cinterop 实现与 C/C 的互操作。 今天这篇文章将补充在 jvm 平台使用 jni。 在 Compose MultiPlatform 中,使用 jvm 平台的是 An…...
【PyTorch】卷积神经网络
文章目录 1. 理论介绍1.1. 从全连接层到卷积层1.1.1. 背景1.1.2. 从全连接层推导出卷积层 1.2. 卷积层1.2.1. 图像卷积1.2.2. 填充和步幅1.2.3. 多通道 1.3. 池化层(又称汇聚层)1.3.1. 背景1.3.2. 池化运算1.3.3. 填充和步幅1.3.4. 多通道 1.4. 卷积神经…...
qt可以详细写的项目或技术
1.QT 图形视图框架 2.QT 模型视图结构 3.QT列表显示大量信息 4.QT播放器 5.QT 编解码 6.QT opencv...
操作系统笔记——储存系统、文件系统(王道408)
文章目录 前言储存系统地址转换内存扩展覆盖交换 储存器分配——连续分配固定大小分区动态分区分配动态分区分配算法 储存器分配——非连续分配页式管理基本思想地址变换硬件快表(TLB)多级页表 段式管理段页式管理 虚拟储存器——基于交换的内存扩充技术…...
基于Html+腾讯云播SDK开发的m3u8播放器
周末业余时间在家无事,学习了一下腾讯的云播放sdk,并制作了一个小demo(m3u8播放器),该在线工具是基于腾讯的云播sdk开发的,云播sdk非常牛,可以支持多种播放格式。 预览地址 m3u8player.org 源码…...
uniapp小程序分享为灰色
引用:https://www.cnblogs.com/panwudi/p/17074172.html uniapp开发的微信小程序,没有转发,分享: 创建一个mixin:common/share.js export default {onShareAppMessage(res) { //发送给朋友return {}},onShareTimeline(res) {//…...
python:五种算法(OOA、WOA、GWO、PSO、GA)求解23个测试函数(python代码)
一、五种算法简介 1、鱼鹰优化算法OOA 2、鲸鱼优化算法WOA 3、灰狼优化算法GWO 4、粒子群优化算法PSO 5、遗传算法GA 二、5种算法求解23个函数 (1)23个函数简介 参考文献: [1] Yao X, Liu Y, Lin G M. Evolutionary programming made…...
DIP——添加运动模糊与滤波
1.运动模糊 为了模拟图像退化的过程,在这里创建了一个用于模拟运动模糊的点扩散函数,具体模糊的方向取决于输入的motion_angle。如果运动方向接近水平,则模糊效果近似水平,如果运动方向接近垂直,则模糊效果近似垂直。具…...
SQL Server查询计划(Query Plan)——SQL处理过程
6. 查询计划(Query Plan) 6.1. SQL处理过程 就SQL语句的处理过程而言,各关系库间大同小异,尤其是商业库之间实现机制和细节差别更小些,其功能及性能支持方面也更加强大和完善。SQL Server作为商业库中的后起之秀,作为SQL语句处理过程的主要支撑和保障,其优化器及相关机…...
【动手学深度学习】(十二)现代卷积神经网络
文章目录 一、深度卷积神经网络AlexNet1.理论知识 一、深度卷积神经网络AlexNet 1.理论知识 ImageNet(2010) 图片自然物体的彩色图片手写数字的黑色图片大小468 * 38728*28样本数1.2M60K类数100010 AlexNet AlexNet赢了2012ImageNet竞赛更深更大的LeNet主要改进ÿ…...
【小沐学Python】Python实现TTS文本转语音(speech、pyttsx3、百度AI)
文章目录 1、简介2、Windows语音2.1 简介2.2 安装2.3 代码 3、pyttsx33.1 简介3.2 安装3.3 代码 4、ggts4.1 简介4.2 安装4.3 代码 5、SAPI6、SpeechLib7、百度AI8、百度飞桨结语 1、简介 TTS(Text To Speech) 译为从文本到语音,TTS是人工智能AI的一个模组…...
TCP通信
第二十一章 网络通信 本章节主要讲解的是TCP和UDP两种通信方式它们都有着自己的优点和缺点 这两种通讯方式不通的地方就是TCP是一对一通信 UDP是一对多的通信方式 接下来会一一讲解 TCP通信 TCP通信方式呢 主要的通讯方式是一对一的通讯方式,也有着优点和缺点…...
超短脉冲激光自聚焦效应
前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应,这是一种非线性光学现象,主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场,对材料产生非线性响应,可能…...
python打卡day49
知识点回顾: 通道注意力模块复习空间注意力模块CBAM的定义 作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...
day52 ResNet18 CBAM
在深度学习的旅程中,我们不断探索如何提升模型的性能。今天,我将分享我在 ResNet18 模型中插入 CBAM(Convolutional Block Attention Module)模块,并采用分阶段微调策略的实践过程。通过这个过程,我不仅提升…...
UE5 学习系列(三)创建和移动物体
这篇博客是该系列的第三篇,是在之前两篇博客的基础上展开,主要介绍如何在操作界面中创建和拖动物体,这篇博客跟随的视频链接如下: B 站视频:s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...
2025 后端自学UNIAPP【项目实战:旅游项目】6、我的收藏页面
代码框架视图 1、先添加一个获取收藏景点的列表请求 【在文件my_api.js文件中添加】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口(适配服务端返回 Token) export const login async (code, avatar) > {const res await http…...
Neo4j 集群管理:原理、技术与最佳实践深度解析
Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...
C++.OpenGL (10/64)基础光照(Basic Lighting)
基础光照(Basic Lighting) 冯氏光照模型(Phong Lighting Model) #mermaid-svg-GLdskXwWINxNGHso {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-GLdskXwWINxNGHso .error-icon{fill:#552222;}#mermaid-svg-GLd…...
零基础设计模式——行为型模式 - 责任链模式
第四部分:行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习!行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想:使多个对象都有机会处…...
Java入门学习详细版(一)
大家好,Java 学习是一个系统学习的过程,核心原则就是“理论 实践 坚持”,并且需循序渐进,不可过于着急,本篇文章推出的这份详细入门学习资料将带大家从零基础开始,逐步掌握 Java 的核心概念和编程技能。 …...
select、poll、epoll 与 Reactor 模式
在高并发网络编程领域,高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表,以及基于它们实现的 Reactor 模式,为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。 一、I…...
