智能优化算法应用:基于飞蛾扑火算法3D无线传感器网络(WSN)覆盖优化 - 附代码
智能优化算法应用:基于飞蛾扑火算法3D无线传感器网络(WSN)覆盖优化 - 附代码
文章目录
- 智能优化算法应用:基于飞蛾扑火算法3D无线传感器网络(WSN)覆盖优化 - 附代码
- 1.无线传感网络节点模型
- 2.覆盖数学模型及分析
- 3.飞蛾扑火算法
- 4.实验参数设定
- 5.算法结果
- 6.参考文献
- 7.MATLAB代码
摘要:本文主要介绍如何用飞蛾扑火算法进行3D无线传感器网(WSN)覆盖优化。
1.无线传感网络节点模型
本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)≤Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xn−xp)2+(yn−yp)2+(zn−zp)2为点和之间的欧式距离。
2.覆盖数学模型及分析
现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l m∗n∗l个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xi−x)2+(yi−y)2+(zi−z)2(3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)≤r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=m∗n∗l∑Pcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。
3.飞蛾扑火算法
飞蛾扑火算法原理请参考:https://blog.csdn.net/u011835903/article/details/107764895
飞蛾扑火算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1−CoverRatio)=argmin(1−m∗n∗l∑Pcov)(6)
4.实验参数设定
无线传感器覆盖参数设定如下:
%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径
飞蛾扑火算法参数如下:
%% 设定飞蛾扑火优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点
5.算法结果
从结果来看,覆盖率在优化过程中不断上升。表明飞蛾扑火算法对覆盖优化起到了优化的作用。
6.参考文献
[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.
7.MATLAB代码
相关文章:

智能优化算法应用:基于飞蛾扑火算法3D无线传感器网络(WSN)覆盖优化 - 附代码
智能优化算法应用:基于飞蛾扑火算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于飞蛾扑火算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.飞蛾扑火算法4.实验参数设定5.算法结果6.…...

3分钟,掌握“曲面屏显示屏”
在3分钟内掌握“曲面屏显示屏”的概念和特点,可以按照以下步骤进行: 一、了解曲面屏显示屏的基本概念 曲面屏显示屏是一种采用柔性塑料的显示屏,主要通过OLED面板来实现。相比直面屏幕,曲面屏幕弹性更好,不易破碎。此外…...

光栅化渲染:光栅化算法实现
光栅化是将图元转换为二维图像的过程。 该图像的每个点都包含颜色和深度等信息。 因此,对图元进行光栅化由两部分组成。 第一个是确定窗口坐标中整数网格的哪些方格被图元占据。 第二个是为每个这样的方块分配颜色和深度值。 (OpenGL 规范) N…...

Python-Opencv图像处理的小坑
1.背景 最近在做一点图像处理的事情,在做处理时的cv2遇到一些小坑,希望大家遇到的相关的问题可以注意!! 2. cv2.imwrite保存图像 cv2.imwrite(filename, img, [params]) filename:需要写入的文件名,包括路…...

[LCTF 2018]bestphp‘s revenge
文章目录 前置知识call_user_func()函数session反序列化PHP原生类SoapClient 解题步骤 前置知识 call_user_func()函数 把第一个参数作为回调函数调用 eg:通过函数的方式回调 <?php function barber($type){echo "you wanted a $type haircut, no problem\n";}c…...

HTML中常用表单元素使用(详解!)
Hi i,m JinXiang ⭐ 前言 ⭐ 本篇文章主要介绍HTML中常用表单元素使用以及部分理论知识 🍉欢迎点赞 👍 收藏 ⭐留言评论 📝私信必回哟😁 🍉博主收将持续更新学习记录获,友友们有任何问题可以在评论区留言 …...
掌握C++模板的艺术:类型参数、默认值和自动推导
掌握C模板的艺术:类型参数、默认值和自动推导 模板参数 类型模板参数 在 Grid 示例中,Grid 模板有一个模板参数:存储在网格中的类型。编写类模板时,您需要在尖括号内指定参数列表,例如: template <typename T&g…...

Unity_使用FairyGUI搭建登录页面
Unity_使用FairyGUI搭建登录页面 1. 使用FairyGUI准备一个UI界面,例如:以下登录 2. 发布导出(发布路径设置为Unity的Asset下任何路径) 3. Unity编辑器安装FairyGUI包资源(在资源商店找见并存储为我的资源,…...

百岁时代即将来临,原知因成为消费新潮流
什么叫长寿时代?泰康保险首席执行官陈东升指出:长寿时代,就是百岁人生即将来临,人人带病长期生存。而在这个时代,人类最大的变化在于“生命尺度的改变”,比如过去20岁是年轻人,40岁中年人,60岁…...

16:00的面试,16:07就出来了,问的问题过于变态了。。。
从小厂出来,没想到在另一家公司又寄了。 到这家公司开始上班,加班是每天必不可少的,看在钱给的比较多的份上,就不太计较了。没想到六月一纸通知,所有人不准加班,加班费不仅没有了,薪资还要降40…...
VUE宝典之el-dialog使用
文章目录 🍁前言🍁el-dialog简介🍁el-dialog属性🍁el-dialog示例🍁父子组件值传递示例 🍁前言 el-dialog是Element UI库中的一个重要组件,用于在Vue应用程序中创建弹出框。它提供了一组实用的属…...
Cocos Creator:坐标系
Cocos Creator:坐标系 坐标系节点位置坐标转换v3.8 实现原理(不想了解可以直接跳过)简单示例:(干货or解决方案在这里!) 锚点缩放和旋转 总结心得 在 Cocos Creator 3.8 中,节点坐标系…...

logback日志框架使用
依赖引入 <dependency><groupId>ch.qos.logback</groupId><artifactId>logback-classic</artifactId><version>1.1.7</version> </dependency> 使用logback日志框架只需要引入以上即可,(我们平时使用较多的Slf4j…...

【八】python装饰器模式
文章目录 8.1 装饰器模式简介8.2 装饰器模式作用8.3 装饰器模式构成8.3.1 装饰器模式包含以下几个核心角色:8.3.2 UML类图 8.4 装饰器模式python代码实现8.4.1 基本装饰器的使用8.4.2 多个装饰器的执行顺序8.4.3 带返回值的装饰器的使用8.4.4 装饰器模式-关联类模式…...

Unity-小工具-LookAt
Unity-小工具-LookAt 🥙介绍 🥙介绍 💡通过扩展方法调用 gameObject.LookAtTarget,让物体转向目标位置 💡gameObject.StopLookat 停止更新 💡可以在调用时传入自动停止标记,等转向目标位置后自…...

TCP实现一对一聊天
一,创建类 二,类 1.ChatSocketServer类 import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.net.ServerSocket; import java.net.Socket; import java.util.Sca…...

全面高压化与全面超快充,破解新能源汽车的时代难题
是什么让新能源车主感到疲惫与焦虑?是什么阻挡更多消费者选择新能源汽车?我们在身边进行一个简单的调查就会发现,问题的答案非常一致:充电。 充电难,充电慢的难题,始终是困扰新能源汽车产业发展,…...

02 CSS基础入门
文章目录 一、CSS介绍1. 简介2. 相关网站3. HTML引入方式 二、选择器1. 标签选择器2. 类选择器3. ID选择器4. 群组选择器 四、样式1. 字体样式2. 文本样式3. 边框样式4. 表格样式 五、模型和布局1. 盒子模型2. 网页布局 一、CSS介绍 1. 简介 CSS主要用于控制网页的外观&#…...
MyBatis框架中的5种设计模式总结
前言 MyBatis框架中使用的5种设计模式分别是:1、建造者模式(生成器模式)。2、工厂模式。3、单例模式。4、代理模式。5、适配器模式。 1、建造者模式(生成器模式) 在MyBatis环境的初始化过程中,SqlSessio…...
ffmpeg相关命令
视频转码 dav转化为mp4格式 ffmpeg -i 2021-08-10.dav -codec copy 11.mp4二进制文件转为mp4格式 // -c:v 指定视频流编码器,不指定编码会默认用mp4这种容器的默认音视频编码进入编码 // copy:不重新编码直接copy源视频流ffmpeg -i 1701687125-4fc72a…...
Ubuntu系统下交叉编译openssl
一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机:Ubuntu 20.04.6 LTSHost:ARM32位交叉编译器:arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...

工业安全零事故的智能守护者:一体化AI智能安防平台
前言: 通过AI视觉技术,为船厂提供全面的安全监控解决方案,涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面,能够实现对应负责人反馈机制,并最终实现数据的统计报表。提升船厂…...

LeetCode - 394. 字符串解码
题目 394. 字符串解码 - 力扣(LeetCode) 思路 使用两个栈:一个存储重复次数,一个存储字符串 遍历输入字符串: 数字处理:遇到数字时,累积计算重复次数左括号处理:保存当前状态&a…...

华为OD机试-食堂供餐-二分法
import java.util.Arrays; import java.util.Scanner;public class DemoTest3 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseint a in.nextIn…...

k8s业务程序联调工具-KtConnect
概述 原理 工具作用是建立了一个从本地到集群的单向VPN,根据VPN原理,打通两个内网必然需要借助一个公共中继节点,ktconnect工具巧妙的利用k8s原生的portforward能力,简化了建立连接的过程,apiserver间接起到了中继节…...
PAN/FPN
import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...

面向无人机海岸带生态系统监测的语义分割基准数据集
描述:海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而,目前该领域仍面临一个挑战,即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...

C++:多态机制详解
目录 一. 多态的概念 1.静态多态(编译时多态) 二.动态多态的定义及实现 1.多态的构成条件 2.虚函数 3.虚函数的重写/覆盖 4.虚函数重写的一些其他问题 1).协变 2).析构函数的重写 5.override 和 final关键字 1&#…...

【笔记】WSL 中 Rust 安装与测试完整记录
#工作记录 WSL 中 Rust 安装与测试完整记录 1. 运行环境 系统:Ubuntu 24.04 LTS (WSL2)架构:x86_64 (GNU/Linux)Rust 版本:rustc 1.87.0 (2025-05-09)Cargo 版本:cargo 1.87.0 (2025-05-06) 2. 安装 Rust 2.1 使用 Rust 官方安…...
CRMEB 中 PHP 短信扩展开发:涵盖一号通、阿里云、腾讯云、创蓝
目前已有一号通短信、阿里云短信、腾讯云短信扩展 扩展入口文件 文件目录 crmeb\services\sms\Sms.php 默认驱动类型为:一号通 namespace crmeb\services\sms;use crmeb\basic\BaseManager; use crmeb\services\AccessTokenServeService; use crmeb\services\sms\…...