当前位置: 首页 > news >正文

【一种用opencv实现高斯曲线拟合的方法】

背景:

项目中需要实现数据的高斯拟合,进而提取数据中标准差,手头只有opencv库,经过资料查找验证,总结该方法。

基础知识:

1、opencv中solve可以实现对矩阵参数的求解;
2、线的拟合就是对多项式参数求解的过程,多项式可表示为矩阵形式;
3、高斯公式中的指数幂,可以通过取对数的方式转变成多项式的形式;
求解思路:
高斯公式->多项式公式->矩阵参数->调用solve求解;

实现过程及代码

1、确定所选的高斯公式形式

G(x)=a*exp(-((x-b)/c)^2);

2、对于给定的输入x1 ~ xn,有对输出y1 ~ yn。可以形成如下等式:

高斯公式及等式组

对等式左右两边取对数,并进行变换,可形成如下形式
对等式左右取自然对数

在这里插入图片描述
这里,就形成了AX^2+BX+C=Y的形式,其中
在这里插入图片描述
用A,B,C替换后后,原等式可写作
在这里插入图片描述
此时,我们只需要计算出A,B,C的值,再通过ABC与abc的关系即可得到abc的值。(请读者自行推导abc的公式,或见代码部分)

得到如上的多项式的形式后,直接构造参数矩阵,调用cv::solve(X,Y,A‘)接口,即可得到参数矩阵A’,其中即含有A,B,C的值。

上代码:

基础定义:

typedef struct StructMultinomialParamt
{double dB0;//多项式拟合的参数,数字表示幂次double dB1;double dB2;
}S_MULTNMNL_PARAMT;
typedef struct StructGaussParamT
{double dA;//指定的高斯参数double dB;//中心点double dC;//标准差
}S_GAUS_PARAMT;
void Gauss(S_GAUS_PARAMT sGsParamm, cv::Mat mX, cv::Mat& mY)
{cv::Mat mRslt = Mat::zeros(mX.size(), mX.type());double dx = 0;for (double i = 0.; i < mX.cols; i++){for (double j = 0.; j < mX.rows; j++){dx = mX.at<double>(j, i);mRslt.at<double>(j, i) = sGsParamm.dA * exp(-(pow((dx - sGsParamm.dB) / sGsParamm.dC, 2)));}}mY = mRslt;return;
}

高斯参数求解函数

void GaussFitT(cv::Mat mX, cv::Mat mY, S_GAUS_PARAMT* psGsParamm)
{//step1 构造参数矩阵mx与mycv::Mat X = Mat::zeros(mX.rows, 3, CV_64FC1);for (size_t i = 0; i < mX.rows; i++){for (size_t J = 0; J < 3; J++){X.at<double>(i, J) = pow(mX.at<double>(i, 0), 2 - J);}}cv::log(mY, mY);//对结果取对数//step2 多项式拟合cv::Mat A;//参数矩阵cv::solve(X, mY, A, cv::DECOMP_SVD);S_MULTNMNL_PARAMT sBparam;sBparam.dB2 = A.at<double>(0);sBparam.dB1 = A.at<double>(1);sBparam.dB0 = A.at<double>(2);//step3 高斯参数计算ABC-》abcpsGsParamm->dA = exp(sBparam.dB0 - pow(sBparam.dB1, 2) / (4 * sBparam.dB2));psGsParamm->dB = -sBparam.dB1 / (2 * sBparam.dB2);psGsParamm->dC = sqrt(-1 / sBparam.dB2);return;
}

# 测试代码

double dX[50];//输入数据X
double dY[50];//输入数据Y
std::vector<cv::Point> pointsOri;for (int i = 0; i < 50; i++)
{dX[i] = double(i);dY[i] = -0.5 * pow((dX[i] - 25), 2) + 320 + i;pointsOri.push_back(cv::Point(dX[i], dY[i]));
}
//转换成求解函数输入需要的数据格式
cv::Mat mGsInputX = Mat::zeros(50, 1, CV_64FC1);
cv::Mat mGsInputY = Mat::zeros(50, 1, CV_64FC1);
for (size_t i = 0; i < 50; i++)
{mGsInputX.at<double>(i) = dX[i];mGsInputY.at<double>(i) = dY[i];
}S_GAUS_PARAMT sGsParamm;//求解结果
GaussFitT(mGsInputX, mGsInputY, &sGsParamm);//结果对比
Mat mGsOutputY;
Gauss(sGsParamm, mGsInputX, mGsOutputY);
std::vector<cv::Point> pointsNew;//拟合结果
for (int i = 0; i < 50; i++)
{pointsNew.push_back(cv::Point(dX[i], mGsOutputY.at<double>(i)));
}
cv::Mat img(450, 60, CV_8UC3, cv::Scalar(0, 0, 0));
cv::polylines(img, std::vector<std::vector<cv::Point>>{pointsOri}, false, cv::Scalar(0, 0, 255), 2);
cv::polylines(img, std::vector<std::vector<cv::Point>>{pointsNew}, false, cv::Scalar(255, 255, 255), 0.5);// 显示图像
cv::imshow("Line Chart", img);
cv::waitKey(0);

运行输出

在这里插入图片描述

红色的为原始数据分布,白色的为拟合计算结果。
而我需要的标准差,则为sGsParamm.dC。

参考:https://blog.csdn.net/guangjie2333/article/details/115629152
https://blog.csdn.net/KYJL888/article/details/103073956
https://blog.csdn.net/qq_35097289/article/details/103910984

后记:

调用solve的接口求解时,OPENCV提供了以下六种方式以对应不同的情况。对于多项式的求解,也可以采用最小二乘法的逼近,不再调用solve方法,这块后面再填坑吧。

cv::DECOMP_LU 高斯消元法(LU分解)
cv::DECOMP_SVD 奇异值分解(SVD)
cv::DECOMP_CHOLESKY 对于对称正定矩阵
cv::DECOMP_EIG 特征值分解,只用于对称矩阵
cv::DECOMP_QR QR因式分解
cv::DECOMP_NORMAL 可选附加标志,表示要求解标准方程

相关文章:

【一种用opencv实现高斯曲线拟合的方法】

背景&#xff1a; 项目中需要实现数据的高斯拟合&#xff0c;进而提取数据中标准差&#xff0c;手头只有opencv库&#xff0c;经过资料查找验证&#xff0c;总结该方法。 基础知识&#xff1a; 1、opencv中solve可以实现对矩阵参数的求解&#xff1b; 2、线的拟合就是对多项…...

find_package 和 find_library的区别

背景 经常看CMakeLists.txt中有find_package和find_library&#xff0c;有时候没留意以为都一样&#xff0c;其实二者差距比较大&#xff0c;下面简单记录一下。 find_package find_package(NAME), 这段代码的本质就是在找一个NAME.cmake这个文件&#xff0c;一般在安装库的…...

socket是如何进行通信的

Socket通信的原理大致分为以下几个步骤&#xff1a; 服务器端建立Socket&#xff0c;开始侦听整个网络中的连接请求。当检测到来自客户端的连接请求时&#xff0c;向客户端发送收到连接请求的信息&#xff0c;并建立与客户端之间的连接。当完成通信后&#xff0c;服务器关闭与…...

STM32-固件打包部署

STM32-固件打包部署 Fang XS.1452512966qq.com STM32固件输出 工程上使用Keil开发STM32软件&#xff1b;在调试过程中&#xff0c;可直接编译下载&#xff1b;例如bootloader和APP&#xff0c;在调试时&#xff0c;可以直接下载2次&#xff1b;但是工程上&#xff0c;需要大…...

微信机器人如何使用?好用吗?好奇

随着微信的使用范围越来越大&#xff0c;所以人一多&#xff0c;管理起来就会遇到很多繁琐的情况需要仍去操作。 比如需要手动一个个通过好友验证&#xff0c;发消息&#xff0c;相同问题一遍遍的回答&#xff0c;消息还容易看漏&#xff0c;回复不过来...... 想着如果有什么可…...

ARMV8 - A64 - 函数调用,内存栈操作

说明 看了下ARM平台上C语言函数调用的反汇编代码&#xff0c;理清楚了其中的内存栈汇编操作&#xff0c;特整理下。本文环境基于&#xff1a;ARMv8-a架构A53核soc&#xff0c;aarch64状态。 预先了解的知识点 内存栈 栈和栈帧的基本概念重点&#xff1a;出栈入栈的单位不是…...

MyBatis 四大核心组件之 ResultSetHandler 源码解析

&#x1f680; 作者主页&#xff1a; 有来技术 &#x1f525; 开源项目&#xff1a; youlai-mall &#x1f343; vue3-element-admin &#x1f343; youlai-boot &#x1f33a; 仓库主页&#xff1a; Gitee &#x1f4ab; Github &#x1f4ab; GitCode &#x1f496; 欢迎点赞…...

docker-compose 单机容器编排

docker-compose 单机容器编排 Dockerfile&#xff1a;先配置好的文件&#xff0c;然后bulid&#xff0c;镜像容器。 docker-compose 既可以基于dockerfile&#xff0c;也可以基于镜像&#xff0c;一键式拉起镜像和容器。 docker-compose 核心就是yml文件&#xff0c;可以定义…...

springboot项目使用Layui作为前端UI的一系列前后端交互的解决方法

背景&#xff1a; 因为比较喜欢Layui&#xff0c;因为多个项目都是从零开始就使用的layui开发的&#xff0c;并且开发过程中借鉴了很多其他项目&#xff08;如Ruoyi、Pear Admin&#xff09;&#xff0c;因此最终选用大部分Pear Admin的项目中使用的一系列解决方案&#xff0c;…...

【Linux】Firewalld防火墙新增端口、开启、查看等

Linux操作系统中&#xff0c;Firewalld防火墙相关操作如下&#xff1a; 安装 yum install firewalld firewalld-configFirewall开启常见端口命令 新增端口&#xff1a; firewall-cmd --zonepublic --add-port80/tcp --permanentfirewall-cmd --zonepublic --add-port443/tc…...

学习笔记 -- TVS管选型参考

一、TVS管基本工作原理 当TVS管(瞬态电压抑制器)两极受到反向瞬态高能量冲击时&#xff0c;能以纳秒(ns)量级的速度&#xff0c;将两极间的高阻抗变为低阻抗&#xff0c;使两极间的电压箝位于一个预定的值&#xff0c;有效地保护电子线路中的元器件。 在浪涌电压作用下&#xf…...

功能更新|免费敏捷工具Leangoo领歌私有部署新增第三方身份认证和API对接

Leangoo领歌是一款永久免费的专业的敏捷开发管理工具&#xff0c;提供端到端敏捷研发管理解决方案&#xff0c;涵盖敏捷需求管理、任务协同、进展跟踪、统计度量等。 Leangoo支持敏捷研发管理全流程&#xff0c;包括小型团队敏捷开发&#xff0c;规模化敏捷SAFe&#xff0c;Scr…...

重生奇迹mu战士加点

在重生奇迹MU中&#xff0c;战士作为一个近战职业&#xff0c;主要依赖于物理攻击来输出伤害。因此&#xff0c;在加点方面&#xff0c;战士需要优先考虑加强自身的攻击力&#xff0c;同时也要增强自身的生存能力和耐久度。 以下是可参考的战士加点方案&#xff1a; 1.力量&a…...

【数据结构(十一·多路查找树)】B树、B+树、B*树(6)

文章目录 1. 二叉树 与 B树1.1. 二叉树存在的问题1.2. 多叉树 的概念1.3. B树 的基本介绍 2. 多叉树——2-3树2.1. 基本概念2.2. 实例应用2.3. 其他说明 3. B 树、B树 和 B*树3.1. B树 的介绍3.2. B树 的介绍3.2. B*树 的介绍 1. 二叉树 与 B树 1.1. 二叉树存在的问题 二叉树…...

弟弟的作业

问题 G: 弟弟的作业 [命题人 : 外部导入] 时间限制 : 1.000 sec 内存限制 : 128 MB 题目描述 你的弟弟刚做完了“100以内数的加减法”这部分的作业&#xff0c;请你帮他检查一下。每道题目&#xff08;包括弟弟的答案&#xff09;的格式为abc或者a-bc&#xff0c;其中a和b是作…...

代码随想录算法训练营第37天|● 738.单调递增的数字 ● 968.监控二叉树 ● 总结

738. 单调递增的数字 中等 相关标签 相关企业 提示 当且仅当每个相邻位数上的数字 x 和 y 满足 x < y 时&#xff0c;我们称这个整数是单调递增的。 给定一个整数 n &#xff0c;返回 小于或等于 n 的最大数字&#xff0c;且数字呈 单调递增 。 示例 1: 输入: n 10输出: …...

出现 java: 找不到符号 符号: 变量 log 的解决方法

目录 1. 问题所示2. 原理分析3. 解决方法3.1 增加编译参数3.2 增加lombok插件3.3 清楚本地缓存1. 问题所示 使用Springboot启动项目的时候,出现如下bug: java: 找不到符号符号: 变量 log位置: 类 org.springblade.example.consumer.rpc.BlogStu...

大数据机器学习与深度学习—— 生成对抗网络(GAN)

GAN概述 在讲GAN之前&#xff0c;先讲一个小趣事&#xff0c;你知道GAN是怎么被发明的吗&#xff1f;据Ian Goodfellow自己说&#xff1a; 之前他一直在研究生成模型&#xff0c;可能是一时兴起&#xff0c;有一天他在酒吧喝酒时&#xff0c;在酒吧里跟朋友讨论起生成模型。然…...

vue前端访问Django channels WebSocket失败

现象 前端报错&#xff1a;SSH.vue:51 WebSocket connection to ‘ws://127.0.0.1:8000/server/terminal/120.59.88.26/22/1/’ failed: 后端报错&#xff1a;Not Found: /server/terminal/120.79.83.26/22/1/ 原因 django的版本与channels的版本不匹配&#xff08;django…...

厉害了!水浸监控技术有升级啦

水浸监控在今天的社会中变得愈发重要&#xff0c;特别是在各种行业和场所。面对突发的水灾&#xff0c;及时有效的监测和预警系统可以帮助组织减少损失&#xff0c;保障人员和财产的安全。 客户案例 商业办公楼 合肥某大型商业办公楼面临着水灾风险&#xff0c;而传统的监控系…...

零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?

一、核心优势&#xff1a;专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发&#xff0c;是一款收费低廉但功能全面的Windows NAS工具&#xff0c;主打“无学习成本部署” 。与其他NAS软件相比&#xff0c;其优势在于&#xff1a; 无需硬件改造&#xff1a;将任意W…...

调用支付宝接口响应40004 SYSTEM_ERROR问题排查

在对接支付宝API的时候&#xff0c;遇到了一些问题&#xff0c;记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...

Go 语言接口详解

Go 语言接口详解 核心概念 接口定义 在 Go 语言中&#xff0c;接口是一种抽象类型&#xff0c;它定义了一组方法的集合&#xff1a; // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的&#xff1a; // 矩形结构体…...

【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)

可以使用Sqliteviz这个网站免费编写sql语句&#xff0c;它能够让用户直接在浏览器内练习SQL的语法&#xff0c;不需要安装任何软件。 链接如下&#xff1a; sqliteviz 注意&#xff1a; 在转写SQL语法时&#xff0c;关键字之间有一个特定的顺序&#xff0c;这个顺序会影响到…...

linux 错误码总结

1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...

React19源码系列之 事件插件系统

事件类别 事件类型 定义 文档 Event Event 接口表示在 EventTarget 上出现的事件。 Event - Web API | MDN UIEvent UIEvent 接口表示简单的用户界面事件。 UIEvent - Web API | MDN KeyboardEvent KeyboardEvent 对象描述了用户与键盘的交互。 KeyboardEvent - Web…...

linux 下常用变更-8

1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行&#xff0c;YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID&#xff1a; YW3…...

TSN交换机正在重构工业网络,PROFINET和EtherCAT会被取代吗?

在工业自动化持续演进的今天&#xff0c;通信网络的角色正变得愈发关键。 2025年6月6日&#xff0c;为期三天的华南国际工业博览会在深圳国际会展中心&#xff08;宝安&#xff09;圆满落幕。作为国内工业通信领域的技术型企业&#xff0c;光路科技&#xff08;Fiberroad&…...

人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent

安全大模型训练计划&#xff1a;基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标&#xff1a;为安全大模型创建高质量、去偏、符合伦理的训练数据集&#xff0c;涵盖安全相关任务&#xff08;如有害内容检测、隐私保护、道德推理等&#xff09;。 1.1 数据收集 描…...

OCR MLLM Evaluation

为什么需要评测体系&#xff1f;——背景与矛盾 ​​ 能干的事&#xff1a;​​ 看清楚发票、身份证上的字&#xff08;准确率>90%&#xff09;&#xff0c;速度飞快&#xff08;眨眼间完成&#xff09;。​​干不了的事&#xff1a;​​ 碰到复杂表格&#xff08;合并单元…...