当前位置: 首页 > news >正文

图论专栏一《图的基础知识》

图论(Graph Theory)是数学的一个分支。它以图为研究对象。图论中的图是由若干给定的点及连接两点的线所构成的图形,这种图形通常用来描述某些实体之间的某种特定关系,用点代表实体,用连接两点的线表示两个实体间具有的某种关系。
相比矩阵、张量、序列等结构,图结构可以有效建模和解决社会关系、交通网络、文法结构和论文引用等需要考虑实体间关系的各种实际问题。因此,为了能够有效利用图结构这种工具,我们必须要对图的定义、类型和性质有一定的认识。

 概念

图是由顶点(vertex)和边(edge)组成的数据结构

如下图:

节点(node)用红色标出,通过黑色的边(edge)连接。

图可用于表示:

  • 社交网络
  • 网页
  • 生物网络

我们可以在图上执行怎样的分析?

  • 研究拓扑结构和连接性
  • 群体检测
  • 识别中心节点
  • 预测缺失的节点
  • 预测缺失的边

为了方便大家的学习,下面我先来介绍一下图的基本术语。

基本术语

图的分类

有向图(Directed Graph):

  • 在有向图中,每条边都有一个方向,从一个顶点指向另一个顶点。
  • 如果顶点 A 到顶点 B 有一条有向边,则我们称顶点 A 直接指向顶点 B。这意味着从顶点 A 出发可以到达顶点 B,但反之则不一定成立。
  • 有向图常用于表示具有方向性关系的问题,例如交通流向、网页链接、任务依赖关系等。

无向图(Undirected Graph):

  • 在无向图中,边没有方向,即连接两个顶点的边可以被看作是双向的。
  • 如果顶点 A 与顶点 B 之间有一条边,那么顶点 A 与顶点 B 之间是相互连通的,可以双向移动。
  • 无向图常用于表示无方向性关系的问题,例如社交网络中的好友关系、道路交通图等。

无向完全图:无向图中,任意两个顶点之间都存在边。

有向完全图:有向图中,任意两个顶点之间都存在方向互为相反的两条弧。

简单图:图中不存在顶点到其自身的边,且同一条边不重复出现。

稀疏图:有很少条边。

稠密图:有很多条边。

子图(Subgraph):假设G=(V,{E})和G‘=(V',{E'}),如果V'包含于V且E'包含于E,则称G'为G的子图。

:顶点之间的逻辑关系用边来表示,边集可以是空的。

无向边(Edge):若顶点V1到V2之间的边没有方向,则称这条边为无向边。

无向图(Undirected graphs):图中任意两个顶点之间的边都是无向边。(A,D)=(D,A)

    对于无向图G来说,G1=(V1,{E1}),其中顶点集合V1={A,B,C,D};边集和E1={(A,B),(B,C),(C,D),(D,A),(A,C)}

有向边:若从顶点V1到V2的边有方向,则称这条边为有向边,也称弧(Arc)。用<V1,V2>表示,V1为弧尾(Tail),V2为弧头(Head)。(V1,V2)≠(V2,V1)。

是指与该顶点相邻的边的数量。

例如上图图中

  • A、B、C、E、F 这几个顶点度数为 2

  • D 顶点度数为 4

有向图中,细分为入度出度,参见下图

分析上图可知个顶点的出度与入度如下:
  • A (2 out / 0 in)   两个出度,没有入度

  • B、C、E (1 out / 1 in)

  • D (2 out / 2 in)

  • F (0 out / 2 in)

边可以有权重,代表从源顶点到目标顶点的距离、费用、时间或其他度量。

路径

路径被定义为从一个顶点到另一个顶点的一系列连续边,例如上图中【北京】到【上海】有多条路径。

  • 北京 - 上海

  • 北京 - 武汉 - 上海

路径长度

  • 不考虑权重,长度就是边的数量

  • 考虑权重,一般就是权重累加

有向图中,从一个顶点开始,可以通过若干条有向边返回到该顶点,那么就形成了一个环。

如下图:

图的连通性

如果两个顶点之间存在路径,则这两个顶点是连通的,所有顶点都连通,则该图被称之为连通图,若子图连通,则称为连通分量

graph LRA --- BA --- CC --- DD --- EB --- EF --- GG --- HH --- FI --- J

根据上面给出的点与点之间的连通性,可得出下图:

强连通分量:有向图中的极大强连通子图。

生成树:无向图中连通且n个顶点n-1条边叫生成树。

有向树:有向图中一顶点入度为0其余顶点入度为1。

森林:一个有向图由若干棵有向树构成生成森林。

图的表示方法

图可以用邻接矩阵和邻接表表示

比如说,下面的图

邻接矩阵可以表示为:

  A B C D
A 0 1 1 0
B 1 0 0 1 
C 1 0 0 1
D 0 1 1 0

邻接表可以表示为:

A -> B -> C
B -> A -> D
C -> A -> D
D -> B -> C

有向图的例子:

graph LR
    A--->B
    A--->C
    B--->D
    C--->D

邻接矩阵可以表示为:

    A  B  C  D
A  0  1  1   0
B  0  0  0   1
C  0  0  0   1
D  0  0  0   0

邻接表可以表示为:

A - B - C
B - D
C - D
D - empty

图的存储结构

邻接矩阵

邻接矩阵:用两个数组,一个数组保存顶点集,一个数组保存边集。

无向图

无向图的邻接矩阵如图

代码示例

我们先将表示顶点和边的类定义出来

假设顶点的类型为 Vertex

class Vertex {int value;// 其他顶点属性
}

假设边的类型为 Edge

class Edge {int startVertexId;int endVertexId;// 其他边属性
}
class Graph {Vertex[] vertices;Edge[] edges;int[][] adjacencyMatrix;public Graph(Vertex[] vertices, Edge[] edges) {this.vertices = vertices;this.edges = edges;this.adjacencyMatrix = new int[vertices.length][vertices.length];// 初始化邻接矩阵,将相应位置设为 1 表示边的连接关系for (Edge edge : edges) {adjacencyMatrix[edge.startVertexId][edge.endVertexId] = 1;// 如果是无向图还需要设置对称位置adjacencyMatrix[edge.endVertexId][edge.startVertexId] = 1;}}
}
有向图

有向图的邻接矩阵如图

代码示例

class Digraph {Vertex[] vertices;Edge[] edges;int[][] adjacencyMatrix;public Digraph(Vertex[] vertices, Edge[] edges) {this.vertices = vertices;this.edges = edges;this.adjacencyMatrix = new int[vertices.length][vertices.length];// 初始化邻接矩阵,将相应位置设为 1 表示边的连接关系for (Edge edge : edges) {adjacencyMatrix[edge.startVertexId][edge.endVertexId] = 1;}}
}

邻接表

邻接表:数组与链表相结合的存储方法。

邻接表表示法(链式)表示如下图:

  • 顶点: 按编号顺序将顶点数据存储在一维数组中。
  • 关联同一顶点的边: 用线性链表存储。
  • 如果有边\弧的信息,还可以在表结点中增加一项,

无向图

无向图的邻接表如下图:

特点:

  • 邻接表不唯一
  • 若无向图中有n个顶点、e条边,则其邻接表需要n个头结点和2e个表结点。适宜存储稀疏图。
  • 无向图中顶点vi的度为第i个单链表中的结点数
     

代码示例

import java.util.ArrayList;
import java.util.List;class Graph {int numVertices;List<List<Integer>> adjacencyList;public Graph(int numVertices) {this.numVertices = numVertices;this.adjacencyList = new ArrayList<>(numVertices);// 初始化邻接表for (int i = 0; i < numVertices; i++) {adjacencyList.add(new ArrayList<>());}}public void addEdge(int src, int dest) {// 添加双向边的连接关系adjacencyList.get(src).add(dest);adjacencyList.get(dest).add(src);}
}
有向图

特点:

  • 顶点vi的出度为第i个单链表中的结点个数。
  • 顶点vi的入度为整个单链表中邻接点域值是i-1的结点个数。
  • 找出度易,找入度难

逆邻接表:

逆邻接表特点:

  • 顶点vi​的入度为第i个单链表中的结点个数。
  • 顶点vi的出度为整个单链表中邻接点域值是i-1的结点个数。
  • 找入度易,找出度难。

当邻接表的存储结构形成后,图便唯一确定。

代码示例:

import java.util.ArrayList;
import java.util.List;class Digraph {int numVertices;List<List<Integer>> adjacencyList;public Digraph(int numVertices) {this.numVertices = numVertices;this.adjacencyList = new ArrayList<>(numVertices);// 初始化邻接表for (int i = 0; i < numVertices; i++) {adjacencyList.add(new ArrayList<>());}}public void addEdge(int src, int dest) {// 添加单向边的连接关系adjacencyList.get(src).add(dest);}
}

图的遍历

广度优先遍历(BFS)

广度优先遍历(Breadth First Search),又称为广度优先搜索,简称BFS。是一种分层的查找过程,每向前走一步可能访问一批顶点,不像深度优先搜索那样有往回退的情况,因此它不是一个递归的算法。为了实现逐层的访问,算法必须借助一个辅助队列,以记忆正在访问的顶点的下一层顶点。
其实他本意就是,先遍历一个节点,然后遍历那个节点所连接的的周边节点,之后再一个结点一个结点的往外遍历,重复循环。

下面举个例子:

这张图,我们设从“3”开始遍历,运用广度优先的方法,那么我们所得到的遍历顺序为3,2,3,4,5,1

深度优先遍历(DFS)

所谓DFS,就是从起点开始,找准一个方向直到走不了为止,然后再原路返回,再找到一个能走的地方继续走的思路。

下面举个例子:

遍历顺序为:1,2,4,7,8,5,3,6

这里这两种算法,我只是概述一下,后面我还会写两篇博文来专门讲这两种遍历方式

上面差不多就是刷图论的题所需要具备的图的基础知识了,后续我会继续更新一些我在刷图论题的一些体会。

相关文章:

图论专栏一《图的基础知识》

图论&#xff08;Graph Theory&#xff09;是数学的一个分支。它以图为研究对象。图论中的图是由若干给定的点及连接两点的线所构成的图形&#xff0c;这种图形通常用来描述某些实体之间的某种特定关系&#xff0c;用点代表实体&#xff0c;用连接两点的线表示两个实体间具有的…...

得帆云为玉柴打造CRM售后服务管理系统,实现服务全过程管理|基于得帆云低代码的CRM案例系列

广西玉柴机器股份有限公司 广西玉柴机器股份有限公司始建于1992年&#xff0c;是国内行业首家赴境外上市的中外合资企业&#xff0c;产品远销亚欧美非等180多个国家和地区。公司总部设在广西玉林市&#xff0c;下辖11家子公司&#xff0c;生产基地布局广西、江苏、安徽、山东等…...

智能优化算法应用:基于蝠鲼觅食算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于蝠鲼觅食算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于蝠鲼觅食算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.蝠鲼觅食算法4.实验参数设定5.算法结果6.…...

vue2 以及 vue3 自定义组件使用 v-model使用默认值以及自定义事件

vue2 以及 vue3 自定义组件使用 v-model使用默认值以及自定义事件 1. vue2 自定义组件的 v-model vue2官网&#xff0c;自定义组件官方解释&#xff1a;一个组件上的 v-model 默认会利用名为 value 的 prop 和名为 input 的事件上代码代码中使用了 element-ui 子组件 使用默…...

《PCL多线程加速处理》-滤波-统计滤波

《PCL多线程加速处理》-滤波-统计滤波 一、效果展示二、实现方式三、代码一、效果展示 提升速度随着点云越多效果越明显 二、实现方式 1、原始的统计滤波实现方式 #include <pcl/filters/statistical_outlier_removal.h>pcl::PointCloud<pcl::PointXYZ...

插入排序——直接插入排序和希尔排序(C语言实现)

文章目录 前言直接插入排序基本思想特性总结代码实现 希尔排序算法思想特性总结代码实现 前言 本博客插入排序动图和希尔排序视频参考大佬java技术爱好者&#xff0c;如有侵权&#xff0c;请联系删除。 直接插入排序 基本思想 直接插入排序是一种简单的插入排序法&#xff…...

【Linux系统化学习】进程地址空间 | 虚拟地址和物理地址的关系

个人主页点击直达&#xff1a;小白不是程序媛 Linux专栏&#xff1a;Linux系统化学习 代码仓库&#xff1a;Gitee 目录 虚拟地址和物理地址 页表 进程地址空间 进程地址空间存在的意义 虚拟地址和物理地址 我们在学习C/C的时候肯定都见过下面这张有关于内存分布的图片&a…...

Navicat 技术指引 | 适用于 GaussDB 分布式的模型功能

Navicat Premium&#xff08;16.3.3 Windows 版或以上&#xff09;正式支持 GaussDB 分布式数据库。GaussDB 分布式模式更适合对系统可用性和数据处理能力要求较高的场景。Navicat 工具不仅提供可视化数据查看和编辑功能&#xff0c;还提供强大的高阶功能&#xff08;如模型、结…...

四十五、Redis主从

目录 1、数据同步原理 &#xff08;1&#xff09;全量同步 &#xff08;2&#xff09;增量同步 &#xff08;3&#xff09;优化Redis主从集群 &#xff08;4&#xff09;什么时候执行全量同步 &#xff08;5&#xff09;什么时候执行增量同步 2、流程 1、数据同步原理 &…...

Spring源码学习一

IOC容器概述 ApplicationContext接口相当于负责bean的初始化、配置和组装的IoC容器. Spring为ApplicationContext提供了一些开箱即用的实现, 独立的应用可以使用 ClassPathXmlApplicationContext或者FileSystemXmlApplicationContext&#xff0c;web应用在web.xml配置监 听&am…...

小红书种草和抖音传播区别是什么?

目前品牌较为关注的2大平台小红书和抖音&#xff0c;两者在种草方面存在一些明显的区别。本次就存量竞争、种草形式和种草策略这三个方面入手进行分析&#xff0c;今天和大家分享下小红书种草和抖音传播区别是什么&#xff1f; 一、存量竞争下的2大平台 2个都是属于存量竞争下的…...

论文阅读《Parameterized Cost Volume for Stereo Matching》

论文地址&#xff1a;https://openaccess.thecvf.com/content/ICCV2023/papers/Zeng_Parameterized_Cost_Volume_for_Stereo_Matching_ICCV_2023_paper.pdf 源码地址&#xff1a;https://github.com/jiaxiZeng/Parameterized-Cost-Volume-for-Stereo-Matching 概述 现有的立体匹…...

解决nuxt3中vue3生命周期钩子onMounted不执行的问题

看到这篇文章算你运气好&#xff01;因为只有我才能给你答案&#xff01;看到就赚到&#xff0c;这就是缘分 因为vue3迁移nuxt3是一个非常困难和痛苦的过程&#xff0c;中间会有各种报错&#xff0c;各种不兼容&#xff0c;各种乱七八糟但是你又找不到答案的问题。 而且你一定…...

Win32 HIWORD和LOWORD宏学习

HIWORD是High Word的缩写,作用是取得某个4字节变量(即32位的值)在内存中处于高位的两个字节,即一个word长的数据; LOWORD是Low Word的缩写,作用是取得某个4字节变量(即32位的值)在内存中处于低位的两个字节,即一个word长的数据; Win32编程常用; Win32窗口编程中,收到 WM_S…...

Axure官方软件安装、汉化保姆级教程(带官方资源下载)

1.下载汉化包 百度云链接&#xff1a;https://pan.baidu.com/s/1lluobjjBZvitASMt8e0A_w?pwdjqxn 提取码&#xff1a; jqxn 2.解压压缩包 3.安装Axure 进行安装 点击next 打勾&#xff0c;然后next, 默认是c盘&#xff0c;修改成自己的文件夹&#xff08;不要什么都放c盘里…...

qt-C++笔记之addAction和addMenu的区别以及QAction的使用场景

qt-C笔记之addAction和addMenu的区别以及QAction的使用场景 code review! 文章目录 qt-C笔记之addAction和addMenu的区别以及QAction的使用场景1.QMenu和QMenuBar的关系与区别2.addMenu和addAction的使用场景区别3.将QAction的信号连接到槽函数4.QAction的使用场景5.将例1修改…...

nodejs 管道通讯

概述 2个nodejs程序的一种通讯方式&#xff0c;管道通讯&#xff0c;跟其他语言一样&#xff0c;管道通讯是一种特殊的socket通讯&#xff0c;普通的socket通讯是通过监听端口触发通讯机制&#xff0c;管道通讯是通过监听文件的方式进行通讯&#xff0c;一般用于单机的多进程通…...

k8s常用命令及示例(三):apply 、edit、delete

k8s常用命令及示例(三)&#xff1a;apply 、edit、delete 1. kubectl apply -f 命令&#xff1a;从yaml文件中创建资源对象。 -f 参数为强制执行。kubectl apply和kubectl create的区别如下&#xff1a;kubectl create 和 kubectl apply 是 Kubernetes 中两个常用的命令&…...

前端页面显示的时间格式为:2022-03-18T01:46:08.000+00:00 如何转换为:年-月-日,并根据当前时间判断为几天前

由于后端每条博文的发表时间是以“xxxx—xx—xxxx:xx:xx”的形式显示的&#xff0c; 现在要在前端改成“xxxx年xx月xx日”的形式。 并对10分钟内发表的显示“刚刚”&#xff0c;对24小时内发表的显示“小时前”。 超过24小时&#xff0c;小于48小时&#xff0c;显示“1天前”。…...

UniGui使用CSS移动端按钮标题垂直

unigui移动端中按钮拉窄以后&#xff0c;标题无法垂直居中&#xff0c;是因为标题有一个padding属性&#xff0c;在四周撑开一段距离。会变成这样&#xff1a; 解决方法&#xff0c;用css修改padding&#xff0c;具体做法如下 首先给button的cls创建一个cls,例如 然后添加css&…...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)

题目&#xff1a;3442. 奇偶频次间的最大差值 I 思路 &#xff1a;哈希&#xff0c;时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况&#xff0c;哈希表这里用数组即可实现。 C版本&#xff1a; class Solution { public:int maxDifference(string s) {int a[26]…...

RocketMQ延迟消息机制

两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数&#xff0c;对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后&#xf…...

进程地址空间(比特课总结)

一、进程地址空间 1. 环境变量 1 &#xff09;⽤户级环境变量与系统级环境变量 全局属性&#xff1a;环境变量具有全局属性&#xff0c;会被⼦进程继承。例如当bash启动⼦进程时&#xff0c;环 境变量会⾃动传递给⼦进程。 本地变量限制&#xff1a;本地变量只在当前进程(ba…...

Xshell远程连接Kali(默认 | 私钥)Note版

前言:xshell远程连接&#xff0c;私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...

Golang dig框架与GraphQL的完美结合

将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用&#xff0c;可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器&#xff0c;能够帮助开发者更好地管理复杂的依赖关系&#xff0c;而 GraphQL 则是一种用于 API 的查询语言&#xff0c;能够提…...

【Go】3、Go语言进阶与依赖管理

前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课&#xff0c;做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程&#xff0c;它的核心机制是 Goroutine 协程、Channel 通道&#xff0c;并基于CSP&#xff08;Communicating Sequential Processes&#xff0…...

Psychopy音频的使用

Psychopy音频的使用 本文主要解决以下问题&#xff1a; 指定音频引擎与设备&#xff1b;播放音频文件 本文所使用的环境&#xff1a; Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...

破解路内监管盲区:免布线低位视频桩重塑停车管理新标准

城市路内停车管理常因行道树遮挡、高位设备盲区等问题&#xff0c;导致车牌识别率低、逃费率高&#xff0c;传统模式在复杂路段束手无策。免布线低位视频桩凭借超低视角部署与智能算法&#xff0c;正成为破局关键。该设备安装于车位侧方0.5-0.7米高度&#xff0c;直接规避树枝遮…...

SpringAI实战:ChatModel智能对话全解

一、引言&#xff1a;Spring AI 与 Chat Model 的核心价值 &#x1f680; 在 Java 生态中集成大模型能力&#xff0c;Spring AI 提供了高效的解决方案 &#x1f916;。其中 Chat Model 作为核心交互组件&#xff0c;通过标准化接口简化了与大语言模型&#xff08;LLM&#xff0…...

6.9-QT模拟计算器

源码: 头文件: widget.h #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QMouseEvent>QT_BEGIN_NAMESPACE namespace Ui { class Widget; } QT_END_NAMESPACEclass Widget : public QWidget {Q_OBJECTpublic:Widget(QWidget *parent nullptr);…...