智能优化算法应用:基于蝠鲼觅食算法3D无线传感器网络(WSN)覆盖优化 - 附代码
智能优化算法应用:基于蝠鲼觅食算法3D无线传感器网络(WSN)覆盖优化 - 附代码
文章目录
- 智能优化算法应用:基于蝠鲼觅食算法3D无线传感器网络(WSN)覆盖优化 - 附代码
- 1.无线传感网络节点模型
- 2.覆盖数学模型及分析
- 3.蝠鲼觅食算法
- 4.实验参数设定
- 5.算法结果
- 6.参考文献
- 7.MATLAB代码
摘要:本文主要介绍如何用蝠鲼觅食算法进行3D无线传感器网(WSN)覆盖优化。
1.无线传感网络节点模型
本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)≤Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xn−xp)2+(yn−yp)2+(zn−zp)2为点和之间的欧式距离。
2.覆盖数学模型及分析
现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l m∗n∗l个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xi−x)2+(yi−y)2+(zi−z)2(3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)≤r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=m∗n∗l∑Pcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。
3.蝠鲼觅食算法
蝠鲼觅食算法原理请参考:https://blog.csdn.net/u011835903/article/details/112390588
蝠鲼觅食算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1−CoverRatio)=argmin(1−m∗n∗l∑Pcov)(6)
4.实验参数设定
无线传感器覆盖参数设定如下:
%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径
蝠鲼觅食算法参数如下:
%% 设定蝠鲼觅食优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点
5.算法结果
从结果来看,覆盖率在优化过程中不断上升。表明蝠鲼觅食算法对覆盖优化起到了优化的作用。
6.参考文献
[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.
7.MATLAB代码
相关文章:

智能优化算法应用:基于蝠鲼觅食算法3D无线传感器网络(WSN)覆盖优化 - 附代码
智能优化算法应用:基于蝠鲼觅食算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于蝠鲼觅食算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.蝠鲼觅食算法4.实验参数设定5.算法结果6.…...
vue2 以及 vue3 自定义组件使用 v-model使用默认值以及自定义事件
vue2 以及 vue3 自定义组件使用 v-model使用默认值以及自定义事件 1. vue2 自定义组件的 v-model vue2官网,自定义组件官方解释:一个组件上的 v-model 默认会利用名为 value 的 prop 和名为 input 的事件上代码代码中使用了 element-ui 子组件 使用默…...

《PCL多线程加速处理》-滤波-统计滤波
《PCL多线程加速处理》-滤波-统计滤波 一、效果展示二、实现方式三、代码一、效果展示 提升速度随着点云越多效果越明显 二、实现方式 1、原始的统计滤波实现方式 #include <pcl/filters/statistical_outlier_removal.h>pcl::PointCloud<pcl::PointXYZ...

插入排序——直接插入排序和希尔排序(C语言实现)
文章目录 前言直接插入排序基本思想特性总结代码实现 希尔排序算法思想特性总结代码实现 前言 本博客插入排序动图和希尔排序视频参考大佬java技术爱好者,如有侵权,请联系删除。 直接插入排序 基本思想 直接插入排序是一种简单的插入排序法ÿ…...

【Linux系统化学习】进程地址空间 | 虚拟地址和物理地址的关系
个人主页点击直达:小白不是程序媛 Linux专栏:Linux系统化学习 代码仓库:Gitee 目录 虚拟地址和物理地址 页表 进程地址空间 进程地址空间存在的意义 虚拟地址和物理地址 我们在学习C/C的时候肯定都见过下面这张有关于内存分布的图片&a…...

Navicat 技术指引 | 适用于 GaussDB 分布式的模型功能
Navicat Premium(16.3.3 Windows 版或以上)正式支持 GaussDB 分布式数据库。GaussDB 分布式模式更适合对系统可用性和数据处理能力要求较高的场景。Navicat 工具不仅提供可视化数据查看和编辑功能,还提供强大的高阶功能(如模型、结…...

四十五、Redis主从
目录 1、数据同步原理 (1)全量同步 (2)增量同步 (3)优化Redis主从集群 (4)什么时候执行全量同步 (5)什么时候执行增量同步 2、流程 1、数据同步原理 &…...
Spring源码学习一
IOC容器概述 ApplicationContext接口相当于负责bean的初始化、配置和组装的IoC容器. Spring为ApplicationContext提供了一些开箱即用的实现, 独立的应用可以使用 ClassPathXmlApplicationContext或者FileSystemXmlApplicationContext,web应用在web.xml配置监 听&am…...

小红书种草和抖音传播区别是什么?
目前品牌较为关注的2大平台小红书和抖音,两者在种草方面存在一些明显的区别。本次就存量竞争、种草形式和种草策略这三个方面入手进行分析,今天和大家分享下小红书种草和抖音传播区别是什么? 一、存量竞争下的2大平台 2个都是属于存量竞争下的…...

论文阅读《Parameterized Cost Volume for Stereo Matching》
论文地址:https://openaccess.thecvf.com/content/ICCV2023/papers/Zeng_Parameterized_Cost_Volume_for_Stereo_Matching_ICCV_2023_paper.pdf 源码地址:https://github.com/jiaxiZeng/Parameterized-Cost-Volume-for-Stereo-Matching 概述 现有的立体匹…...

解决nuxt3中vue3生命周期钩子onMounted不执行的问题
看到这篇文章算你运气好!因为只有我才能给你答案!看到就赚到,这就是缘分 因为vue3迁移nuxt3是一个非常困难和痛苦的过程,中间会有各种报错,各种不兼容,各种乱七八糟但是你又找不到答案的问题。 而且你一定…...
Win32 HIWORD和LOWORD宏学习
HIWORD是High Word的缩写,作用是取得某个4字节变量(即32位的值)在内存中处于高位的两个字节,即一个word长的数据; LOWORD是Low Word的缩写,作用是取得某个4字节变量(即32位的值)在内存中处于低位的两个字节,即一个word长的数据; Win32编程常用; Win32窗口编程中,收到 WM_S…...

Axure官方软件安装、汉化保姆级教程(带官方资源下载)
1.下载汉化包 百度云链接:https://pan.baidu.com/s/1lluobjjBZvitASMt8e0A_w?pwdjqxn 提取码: jqxn 2.解压压缩包 3.安装Axure 进行安装 点击next 打勾,然后next, 默认是c盘,修改成自己的文件夹(不要什么都放c盘里…...

qt-C++笔记之addAction和addMenu的区别以及QAction的使用场景
qt-C笔记之addAction和addMenu的区别以及QAction的使用场景 code review! 文章目录 qt-C笔记之addAction和addMenu的区别以及QAction的使用场景1.QMenu和QMenuBar的关系与区别2.addMenu和addAction的使用场景区别3.将QAction的信号连接到槽函数4.QAction的使用场景5.将例1修改…...

nodejs 管道通讯
概述 2个nodejs程序的一种通讯方式,管道通讯,跟其他语言一样,管道通讯是一种特殊的socket通讯,普通的socket通讯是通过监听端口触发通讯机制,管道通讯是通过监听文件的方式进行通讯,一般用于单机的多进程通…...

k8s常用命令及示例(三):apply 、edit、delete
k8s常用命令及示例(三):apply 、edit、delete 1. kubectl apply -f 命令:从yaml文件中创建资源对象。 -f 参数为强制执行。kubectl apply和kubectl create的区别如下:kubectl create 和 kubectl apply 是 Kubernetes 中两个常用的命令&…...

前端页面显示的时间格式为:2022-03-18T01:46:08.000+00:00 如何转换为:年-月-日,并根据当前时间判断为几天前
由于后端每条博文的发表时间是以“xxxx—xx—xxxx:xx:xx”的形式显示的, 现在要在前端改成“xxxx年xx月xx日”的形式。 并对10分钟内发表的显示“刚刚”,对24小时内发表的显示“小时前”。 超过24小时,小于48小时,显示“1天前”。…...

UniGui使用CSS移动端按钮标题垂直
unigui移动端中按钮拉窄以后,标题无法垂直居中,是因为标题有一个padding属性,在四周撑开一段距离。会变成这样: 解决方法,用css修改padding,具体做法如下 首先给button的cls创建一个cls,例如 然后添加css&…...

0-50KHz频率响应模拟量高速信号隔离变送器
0-50KHz频率响应模拟量高速信号隔离变送器 型号:JSD TA-2322F系列 高速响应时间,频率响应时间快 特点: ◆小体积,低成本,标准 DIN35mm 导轨安装方式 ◆六端隔离(输入、输出、工作电源和通道间相互隔离) ◆高速信号采集 (-3dB,Min≤ 3.5 uS,订…...

Linux系统下CPU性能问题分析案例
(上) 本文涉及案例来自于学习极客时间专栏《Linux性能优化实战》精心整理而来,案例总结不到位的请各位多多指正。 某个应用的CPU使用率居然达到100%,我该怎么办? 分析过程 使用观察系统CPU使用情况(并按下…...

CTF show Web 红包题第六弹
提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框,很难让人不联想到SQL注入,但提示都说了不是SQL注入,所以就不往这方面想了 先查看一下网页源码,发现一段JavaScript代码,有一个关键类ctfs…...

微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】
微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来,Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...
基于服务器使用 apt 安装、配置 Nginx
🧾 一、查看可安装的 Nginx 版本 首先,你可以运行以下命令查看可用版本: apt-cache madison nginx-core输出示例: nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...
Neo4j 集群管理:原理、技术与最佳实践深度解析
Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...

uniapp 开发ios, xcode 提交app store connect 和 testflight内测
uniapp 中配置 配置manifest 文档:manifest.json 应用配置 | uni-app官网 hbuilderx中本地打包 下载IOS最新SDK 开发环境 | uni小程序SDK hbulderx 版本号:4.66 对应的sdk版本 4.66 两者必须一致 本地打包的资源导入到SDK 导入资源 | uni小程序SDK …...

Linux 下 DMA 内存映射浅析
序 系统 I/O 设备驱动程序通常调用其特定子系统的接口为 DMA 分配内存,但最终会调到 DMA 子系统的dma_alloc_coherent()/dma_alloc_attrs() 等接口。 关于 dma_alloc_coherent 接口详细的代码讲解、调用流程,可以参考这篇文章,我觉得写的非常…...
Java 与 MySQL 性能优化:MySQL 慢 SQL 诊断与分析方法详解
文章目录 一、开启慢查询日志,定位耗时SQL1.1 查看慢查询日志是否开启1.2 临时开启慢查询日志1.3 永久开启慢查询日志1.4 分析慢查询日志 二、使用EXPLAIN分析SQL执行计划2.1 EXPLAIN的基本使用2.2 EXPLAIN分析案例2.3 根据EXPLAIN结果优化SQL 三、使用SHOW PROFILE…...

Vue3 PC端 UI组件库我更推荐Naive UI
一、Vue3生态现状与UI库选择的重要性 随着Vue3的稳定发布和Composition API的广泛采用,前端开发者面临着UI组件库的重新选择。一个好的UI库不仅能提升开发效率,还能确保项目的长期可维护性。本文将对比三大主流Vue3 UI库(Naive UI、Element …...
Yii2项目自动向GitLab上报Bug
Yii2 项目自动上报Bug 原理 yii2在程序报错时, 会执行指定action, 通过重写ErrorAction, 实现Bug自动提交至GitLab的issue 步骤 配置SiteController中的actions方法 public function actions(){return [error > [class > app\helpers\web\ErrorAction,],];}重写Error…...

npm安装electron下载太慢,导致报错
npm安装electron下载太慢,导致报错 背景 想学习electron框架做个桌面应用,卡在了安装依赖(无语了)。。。一开始以为node版本或者npm版本太低问题,调整版本后还是报错。偶尔执行install命令后,可以开始下载…...