当前位置: 首页 > news >正文

机器学习-聚类问题

前言

聚类算法又叫做”无监督分类“,目标是通过对无标记训练样本来揭示数据的内在性质及 规律,为进一步的数据分析提供基础。

Kmeans

作为聚类算法的典型代表,Kmeans可以说是最简单的聚类算法,没有之一,那她是怎么完成聚类的呢?

  1. 算法接受参数k
  2. 给定样本集 D = { x 1 , x 2 , . . . , x n } D=\{x_1,x_2,...,x_n\} D={x1,x2,...,xn}
  3. 随机选点k个中心(质心)
  4. 遍历样本集,先取距离最近的质心,从而根据质心分解样本集D簇划分 C = { C 1 , C 2 , . . . , C k } C=\{C_1,C_2,...,C_k\} C={C1,C2,...,Ck}
  5. 最小化平方误差在这里插入图片描述
  6. 利用簇中均值等方法更新该簇类的中心k个;
  7. 重覆4-6的步骤,直至E不再更新

Kmeans中用的是欧式距离

kmeans的计算过程

  1. 现在有4组数据,每组数据有2个维度,对其进行聚类分为2类,将其可视化一下。
    在这里插入图片描述
  2. 通过比较,将其进行归类。并使用平均法更新中心位置。在这里插入图片描述
  3. 再次计算每个点与更新后的位置中心的距离,直到上一次的类别标记无变化,即可停止
import matplotlib.pyplot as plt
from sklearn.cluster import  KMeans
from sklearn.datasets import make_blobs## 创建数据集
X, _ = make_blobs(n_samples=10000, centers=2, random_state=0)## kmeans超参数值列表
n_clusters_list = [4, 8, 16]# 图的框架
fig, axs = plt.subplots(1, len(n_clusters_list), figsize=(12, 5)
)
axs = axs.T
for j, n_clusters in enumerate(n_clusters_list):## 创建模型algo = KMeans(n_clusters=n_clusters, random_state=random_state, n_init=3)algo.fit(X)centers = algo.cluster_centers_axs[j].scatter(X[:, 0], X[:, 1], s=10, c=algo.labels_)## 画质心axs[j].scatter(centers[:, 0], centers[:, 1], c="r", s=20)axs[j].set_title(f"{n_clusters} clusters")
for ax in axs.flat:ax.label_outer()ax.set_xticks([])ax.set_yticks([])
plt.show()

聚类算法用于降维

K-Means聚类最重要的应用之一是非结构数据(图像,声音)上的矢量量化(VQ)。非结构化数据往往占用比较多的储存空间,文件本身也会比较大,运算非常缓慢,我们希望能够在保证数据质量的前提下,尽量地缩小非结构化数据的大小,或者简化非结构化数据的结构。

  1. 一组40个样本的数据,分别含有40组不同的信息(x1,x2)。
  2. 将代表所有样本点聚成4类,找出四个质心.这些点和他们所属的质心非常相似,因此他们所承载的信息就约等于他们所在的簇的质心所承载的信息。
  3. 使用每个样本所在的簇的质心来覆盖原有的样本,有点类似四舍五入的感觉,类似于用1来代替0.9和0.8。

这样,40个样本带有的40种取值,就被我们压缩了4组取值,虽然样本量还是40个,但是这40个样本所带的取值其实只有4个,就是分出来的四个簇的质心。查看官方用例

主要参考

《机器学习理论(十三)Kmeans聚类》

相关文章:

机器学习-聚类问题

前言 聚类算法又叫做”无监督分类“,目标是通过对无标记训练样本来揭示数据的内在性质及 规律,为进一步的数据分析提供基础。 Kmeans 作为聚类算法的典型代表,Kmeans可以说是最简单的聚类算法,没有之一,那她是怎么完…...

leetcode9.回文数java解法

力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台 给你一个整数 x ,如果 x 是一个回文整数,返回 true ;否则,返回 false 。 回文数是指正序(从左向右)和倒序(从右向左&…...

图论专栏一《图的基础知识》

图论(Graph Theory)是数学的一个分支。它以图为研究对象。图论中的图是由若干给定的点及连接两点的线所构成的图形,这种图形通常用来描述某些实体之间的某种特定关系,用点代表实体,用连接两点的线表示两个实体间具有的…...

得帆云为玉柴打造CRM售后服务管理系统,实现服务全过程管理|基于得帆云低代码的CRM案例系列

广西玉柴机器股份有限公司 广西玉柴机器股份有限公司始建于1992年,是国内行业首家赴境外上市的中外合资企业,产品远销亚欧美非等180多个国家和地区。公司总部设在广西玉林市,下辖11家子公司,生产基地布局广西、江苏、安徽、山东等…...

智能优化算法应用:基于蝠鲼觅食算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于蝠鲼觅食算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于蝠鲼觅食算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.蝠鲼觅食算法4.实验参数设定5.算法结果6.…...

vue2 以及 vue3 自定义组件使用 v-model使用默认值以及自定义事件

vue2 以及 vue3 自定义组件使用 v-model使用默认值以及自定义事件 1. vue2 自定义组件的 v-model vue2官网,自定义组件官方解释:一个组件上的 v-model 默认会利用名为 value 的 prop 和名为 input 的事件上代码代码中使用了 element-ui 子组件 使用默…...

《PCL多线程加速处理》-滤波-统计滤波

《PCL多线程加速处理》-滤波-统计滤波 一、效果展示二、实现方式三、代码一、效果展示 提升速度随着点云越多效果越明显 二、实现方式 1、原始的统计滤波实现方式 #include <pcl/filters/statistical_outlier_removal.h>pcl::PointCloud<pcl::PointXYZ...

插入排序——直接插入排序和希尔排序(C语言实现)

文章目录 前言直接插入排序基本思想特性总结代码实现 希尔排序算法思想特性总结代码实现 前言 本博客插入排序动图和希尔排序视频参考大佬java技术爱好者&#xff0c;如有侵权&#xff0c;请联系删除。 直接插入排序 基本思想 直接插入排序是一种简单的插入排序法&#xff…...

【Linux系统化学习】进程地址空间 | 虚拟地址和物理地址的关系

个人主页点击直达&#xff1a;小白不是程序媛 Linux专栏&#xff1a;Linux系统化学习 代码仓库&#xff1a;Gitee 目录 虚拟地址和物理地址 页表 进程地址空间 进程地址空间存在的意义 虚拟地址和物理地址 我们在学习C/C的时候肯定都见过下面这张有关于内存分布的图片&a…...

Navicat 技术指引 | 适用于 GaussDB 分布式的模型功能

Navicat Premium&#xff08;16.3.3 Windows 版或以上&#xff09;正式支持 GaussDB 分布式数据库。GaussDB 分布式模式更适合对系统可用性和数据处理能力要求较高的场景。Navicat 工具不仅提供可视化数据查看和编辑功能&#xff0c;还提供强大的高阶功能&#xff08;如模型、结…...

四十五、Redis主从

目录 1、数据同步原理 &#xff08;1&#xff09;全量同步 &#xff08;2&#xff09;增量同步 &#xff08;3&#xff09;优化Redis主从集群 &#xff08;4&#xff09;什么时候执行全量同步 &#xff08;5&#xff09;什么时候执行增量同步 2、流程 1、数据同步原理 &…...

Spring源码学习一

IOC容器概述 ApplicationContext接口相当于负责bean的初始化、配置和组装的IoC容器. Spring为ApplicationContext提供了一些开箱即用的实现, 独立的应用可以使用 ClassPathXmlApplicationContext或者FileSystemXmlApplicationContext&#xff0c;web应用在web.xml配置监 听&am…...

小红书种草和抖音传播区别是什么?

目前品牌较为关注的2大平台小红书和抖音&#xff0c;两者在种草方面存在一些明显的区别。本次就存量竞争、种草形式和种草策略这三个方面入手进行分析&#xff0c;今天和大家分享下小红书种草和抖音传播区别是什么&#xff1f; 一、存量竞争下的2大平台 2个都是属于存量竞争下的…...

论文阅读《Parameterized Cost Volume for Stereo Matching》

论文地址&#xff1a;https://openaccess.thecvf.com/content/ICCV2023/papers/Zeng_Parameterized_Cost_Volume_for_Stereo_Matching_ICCV_2023_paper.pdf 源码地址&#xff1a;https://github.com/jiaxiZeng/Parameterized-Cost-Volume-for-Stereo-Matching 概述 现有的立体匹…...

解决nuxt3中vue3生命周期钩子onMounted不执行的问题

看到这篇文章算你运气好&#xff01;因为只有我才能给你答案&#xff01;看到就赚到&#xff0c;这就是缘分 因为vue3迁移nuxt3是一个非常困难和痛苦的过程&#xff0c;中间会有各种报错&#xff0c;各种不兼容&#xff0c;各种乱七八糟但是你又找不到答案的问题。 而且你一定…...

Win32 HIWORD和LOWORD宏学习

HIWORD是High Word的缩写,作用是取得某个4字节变量(即32位的值)在内存中处于高位的两个字节,即一个word长的数据; LOWORD是Low Word的缩写,作用是取得某个4字节变量(即32位的值)在内存中处于低位的两个字节,即一个word长的数据; Win32编程常用; Win32窗口编程中,收到 WM_S…...

Axure官方软件安装、汉化保姆级教程(带官方资源下载)

1.下载汉化包 百度云链接&#xff1a;https://pan.baidu.com/s/1lluobjjBZvitASMt8e0A_w?pwdjqxn 提取码&#xff1a; jqxn 2.解压压缩包 3.安装Axure 进行安装 点击next 打勾&#xff0c;然后next, 默认是c盘&#xff0c;修改成自己的文件夹&#xff08;不要什么都放c盘里…...

qt-C++笔记之addAction和addMenu的区别以及QAction的使用场景

qt-C笔记之addAction和addMenu的区别以及QAction的使用场景 code review! 文章目录 qt-C笔记之addAction和addMenu的区别以及QAction的使用场景1.QMenu和QMenuBar的关系与区别2.addMenu和addAction的使用场景区别3.将QAction的信号连接到槽函数4.QAction的使用场景5.将例1修改…...

nodejs 管道通讯

概述 2个nodejs程序的一种通讯方式&#xff0c;管道通讯&#xff0c;跟其他语言一样&#xff0c;管道通讯是一种特殊的socket通讯&#xff0c;普通的socket通讯是通过监听端口触发通讯机制&#xff0c;管道通讯是通过监听文件的方式进行通讯&#xff0c;一般用于单机的多进程通…...

k8s常用命令及示例(三):apply 、edit、delete

k8s常用命令及示例(三)&#xff1a;apply 、edit、delete 1. kubectl apply -f 命令&#xff1a;从yaml文件中创建资源对象。 -f 参数为强制执行。kubectl apply和kubectl create的区别如下&#xff1a;kubectl create 和 kubectl apply 是 Kubernetes 中两个常用的命令&…...

基于算法竞赛的c++编程(28)结构体的进阶应用

结构体的嵌套与复杂数据组织 在C中&#xff0c;结构体可以嵌套使用&#xff0c;形成更复杂的数据结构。例如&#xff0c;可以通过嵌套结构体描述多层级数据关系&#xff1a; struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...

XCTF-web-easyupload

试了试php&#xff0c;php7&#xff0c;pht&#xff0c;phtml等&#xff0c;都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接&#xff0c;得到flag...

(十)学生端搭建

本次旨在将之前的已完成的部分功能进行拼装到学生端&#xff0c;同时完善学生端的构建。本次工作主要包括&#xff1a; 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...

高危文件识别的常用算法:原理、应用与企业场景

高危文件识别的常用算法&#xff1a;原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件&#xff0c;如包含恶意代码、敏感数据或欺诈内容的文档&#xff0c;在企业协同办公环境中&#xff08;如Teams、Google Workspace&#xff09;尤为重要。结合大模型技术&…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)

本文把滑坡位移序列拆开、筛优质因子&#xff0c;再用 CNN-BiLSTM-Attention 来动态预测每个子序列&#xff0c;最后重构出总位移&#xff0c;预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵&#xff08;S…...

Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理

引言 Bitmap&#xff08;位图&#xff09;是Android应用内存占用的“头号杀手”。一张1080P&#xff08;1920x1080&#xff09;的图片以ARGB_8888格式加载时&#xff0c;内存占用高达8MB&#xff08;192010804字节&#xff09;。据统计&#xff0c;超过60%的应用OOM崩溃与Bitm…...

代理篇12|深入理解 Vite中的Proxy接口代理配置

在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...

基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解

JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用&#xff0c;结合SQLite数据库实现联系人管理功能&#xff0c;并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能&#xff0c;同时可以最小化到系统…...

现有的 Redis 分布式锁库(如 Redisson)提供了哪些便利?

现有的 Redis 分布式锁库&#xff08;如 Redisson&#xff09;相比于开发者自己基于 Redis 命令&#xff08;如 SETNX, EXPIRE, DEL&#xff09;手动实现分布式锁&#xff0c;提供了巨大的便利性和健壮性。主要体现在以下几个方面&#xff1a; 原子性保证 (Atomicity)&#xff…...

git: early EOF

macOS报错&#xff1a; Initialized empty Git repository in /usr/local/Homebrew/Library/Taps/homebrew/homebrew-core/.git/ remote: Enumerating objects: 2691797, done. remote: Counting objects: 100% (1760/1760), done. remote: Compressing objects: 100% (636/636…...