【深度学习目标检测】六、基于深度学习的路标识别(python,目标检测,yolov8)
YOLOv8是一种物体检测算法,是YOLO系列算法的最新版本。
YOLO(You Only Look Once)是一种实时物体检测算法,其优势在于快速且准确的检测结果。YOLOv8在之前的版本基础上进行了一系列改进和优化,提高了检测速度和准确性。
YOLOv8采用了Darknet-53作为其基础网络架构。Darknet-53是一个53层的卷积神经网络,用于提取图像特征。与传统的卷积神经网络相比,Darknet-53具有更深的网络结构和更多的卷积层,可以更好地捕捉图像中的细节和语义信息。
在YOLOv8中,还使用了一些技术来提高检测性能。首先是使用了多尺度检测。YOLOv8在不同的尺度上检测物体,这样可以更好地处理物体的大小变化和远近距离差异。其次是利用了FPN(Feature Pyramid Network)结构来提取多尺度特征。FPN可以将不同层级的特征图进行融合,使得算法对不同大小的物体都有较好的适应性。
此外,YOLOv8还利用了一种称为CSPDarknet的网络结构来减少计算量。CSPDarknet使用了CSP(Cross Stage Partial)结构,在网络的前向和后向传播过程中进行特征融合,从而减少了网络的参数量和计算量。
在训练阶段,YOLOv8使用了一种称为CutMix的数据增强技术。CutMix将不同图像的一部分进行混合,从而增加了数据的多样性和鲁棒性。
总而言之,YOLOv8是一种快速而准确的物体检测算法,它通过引入Darknet-53网络、多尺度检测、FPN结构、CSPDarknet结构和CutMix数据增强等技术,实现了对不同大小和距离的物体进行快速、准确的检测。
本文介绍了基于Yolov8的路标检测模型,包括训练过程和数据准备过程,同时提供了推理的代码。对准备计算机视觉相关的毕业设计的同学有着一定的帮助。
效果如下图:
一、安装YoloV8
yolov8官方文档:主页 - Ultralytics YOLOv8 文档
安装部分参考:官方安装教程
二、数据集准备
路标检测数据集,检测4种路标:speedlimit,crosswalk,trafficlight,stop。总共877张图,其中训练集701张图、测试集176张图。
示例图片如下:
原始的数据格式为COCO格式,本文提供转换好的yolov8格式数据集,,可以直接放入yolov8中训练,数据集地址:路标数据集yolov8格式
三、模型训练
1、数据集配置文件
在ultralytics/ultralytics/cfg/datasets目录下添加roadsign.yaml,添加以下内容(path修改为自己的路径):
# Ultralytics YOLO 🚀, AGPL-3.0 license
# COCO 2017 dataset http://cocodataset.org by Microsoft
# Example usage: yolo train data=coco.yaml
# parent
# ├── ultralytics
# └── datasets
# └── coco ← downloads here (20.1 GB)# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: datasets/roadsign/roadsign-yolov8 # 修改为自己的数据路径
train: images/train
val: images/val
test: images/val # Classes
names:# 0: normal0: speedlimit # speedlimit,crosswalk,trafficlight,stop1: crosswalk2: trafficlight3: stop
2、修改模型配置文件
在ultralytics/ultralytics/cfg/models/v8目录下添加yolov8n_roadsign.yaml,添加以下内容:
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 4 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPs# s: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPs# m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPs# l: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs# x: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, SPPF, [1024, 5]] # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]] # cat backbone P4- [-1, 3, C2f, [512]] # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]] # cat backbone P3- [-1, 3, C2f, [256]] # 15 (P3/8-small)- [-1, 1, PolarizedSelfAttention, [256]] # 16- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]] # cat head P4- [-1, 3, C2f, [512]] # 18 (P4/16-medium)- [-1, 1, PolarizedSelfAttention, [512]] # 20- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]] # cat head P5- [-1, 3, C2f, [1024]] # 21 (P5/32-large)- [-1, 1, PolarizedSelfAttention, [1024]] # 24- [[16, 20, 24], 1, Detect, [nc]] # Detect(P3, P4, P5)
3、训练模型
使用如下命令训练模型,相关路径更改为自己的路径,建议绝对路径:
yolo detect train project=deploy name=yolov8_roadsign exist_ok=True optimizer=auto val=True amp=True epochs=100 imgsz=640 model=ultralytics/ultralytics/cfg/models/v8/yolov8_roadsign.yaml data=ultralytics/ultralytics/cfg/datasets/roadsign.yaml
4、验证模型
使用如下命令验证模型,相关路径根据需要修改:
yolo detect val imgsz=640 model=deploy/yolov8_roadsign/weights/best.pt data=ultralytics/ultralytics/cfg/datasets/roadsign.yaml
精度如下图:
四、推理
训练好了模型,可以使用如下代码实现推理,将权重放到同级目录:
from PIL import Image
from ultralytics import YOLO# 加载预训练的YOLOv8n模型
model = YOLO('best.pt')# 在'bus.jpg'上运行推理
image_path = 'road582.png'
results = model(image_path) # 结果列表# 展示结果
for r in results:im_array = r.plot() # 绘制包含预测结果的BGR numpy数组im = Image.fromarray(im_array[..., ::-1]) # RGB PIL图像im.show() # 显示图像im.save('results.jpg') # 保存图像
本教程训练好的权重和推理代码、示例代码连接:推理代码和训练好的权重
相关文章:

【深度学习目标检测】六、基于深度学习的路标识别(python,目标检测,yolov8)
YOLOv8是一种物体检测算法,是YOLO系列算法的最新版本。 YOLO(You Only Look Once)是一种实时物体检测算法,其优势在于快速且准确的检测结果。YOLOv8在之前的版本基础上进行了一系列改进和优化,提高了检测速度和准确性。…...

Vue3上传图片和删除图片
<div class"illness-img"><van-uploader:after-read"onAfterRead"delete"onDeleteImg"v-model"fileList"max-count"9":max-size"5 * 1024 * 1024"upload-icon"photo-o"upload-text"上传图…...

华为配置VRRP负载分担示例
组网需求 如图1所示,HostA和HostC通过Switch双归属到SwitchA和SwitchB。为减轻SwitchA上数据流量的承载压力,HostA以SwitchA为默认网关接入Internet,SwitchB作为备份网关;HostC以SwitchB为默认网关接入Internet,Switc…...
【Python】按升序排列 Excel 工作表
发现按名称对 Excel 工作表进行排序很麻烦,因此创建了一个代码来使用 Python 的 openpyxl 对它们进行排序。 1. 本次创建的代码概述 在GUI中指定一个Excel文件(使用Tkinter。这是一个标准模块,因此不需要安装)加载Excel文件&…...

定时器TIM HAL库+cubeMX(上)
定时器时钟源APB1 36MHz 一.基本定时器 1.基本框图 2.溢出时间计算 3.配置定时器步骤 TIM_HandleTypeDef g_timx_handle;/* 定时器中断初始化函数 */ void btim_timx_int_init(uint16_t arr, uint16_t psc) {g_timx_handle.Instance TIM6;g_timx_handle.Init.Prescaler p…...

我常用的几个经典Python模块
Python常用的模块非常多,主要分为内置模块和第三方模块两大类,且不同模块应用场景不同又可以分为文本类、数据结构类、数学运算类、文件系统类、爬虫类、网络通讯类等多个类型。 大家常用的内置模块比如:math、re、datetime、urllib、os、ra…...

课堂练习4.4:页式虚存
4-7 课堂练习4.4:页式虚存 缺页异常在 Linux 内核处理中占有非常重要的位置,很多 Linux 特性,如写时复制,页框延迟分配,内存回收中的磁盘和内存交换,都需要借助缺页异常来进行。 本实训分析 Linux 0.11 的…...

javascript实现Stack(栈)数据结构
上一篇文章我们理解了List这种数据结构,知道了它的特点和一些使用场景,这篇文章我们就来看一下栈这种数据结构,这里的栈可不是客栈哦,哈哈 栈其实和List非常像,使用javascript实现都是基于数组来实现 尝试理解Stack …...

Layui深入
1、代码: <!DOCTYPE html> <html> <head> <meta charset"utf-8"> <title>注册页面</title> <style> .container { max-width: 600px; margin: 0 auto; padding: 20px; …...

网络层--TCP/UDP协议
目录 一、TCP/UDP协议介绍 1、UDP(User Datagram Protocol)--用户数据报协议 1.1 UDP报文格式 1.2 UDP协议的特性 2、TCP(Transmission Control Protocol )--传输控制协议 2.1 TCP报文格式 2.2 TCP协议的特性 2.3 TCP三次握手 2.4 四次挥手 三、TCP和UDP的区别 四、t…...
前端发送请求之参数处理---multipart/form-data与application/x-www-form-urlencoded
Content-Type就是指 HTTP 发送信息至服务器时的内容编码类型,服务器根据编码类型使用特定的解析方式,获取数据流中的数据。 其实前后端发送请求的方式有 text/plain、application/json、application/x-www-form-urlencoded、 multipart/form-data等&…...
解决Ubuntu16.04没声音
第一步:安装 PulseAudio Volum Control Ubuntu没有声音(听不到声音)的解决方法 第二步:No cards available for configuration 【解决Ubuntu18.04没声音:No cards available for configuration】 完美解决…...
12.14每日一题(备战蓝桥杯归并排序)
12.14每日一题(备战蓝桥杯归并排序) 题目 归并排序 给定你一个长度为 n 的整数数列。 请你使用归并排序对这个数列按照从小到大进行排序。 并将排好序的数列按顺序输出。 输入格式 输入共两行,第一行包含整数 n。 第二行包含 n 个整数&…...
面试__Java常见异常有哪些?
java.lang.IllegalAccessError:违法访问错误。当一个应用试图访问、修改某个类的域(Field)或 者调用其方法,但是又违反域或方法的可见性声明,则抛出该异常。 java.lang.InstantiationError:实例化错误。当…...

linux 网络子系统 摘要
当你输入一个网址并按下回车键的时候,首先,应用层协议对该请求包做了格式定义;紧接着传输层协议加上了双方的端口号,确认了双方通信的应用程序;然后网络协议加上了双方的IP地址,确认了双方的网络位置;最后链路层协议加上了双方的M…...
java发起http、https请求,并携带cookie、header,post参数放body并可选关闭ssl证书验证,高可用版
公司有个需求是发起https请求对接国家数据接口,需要带header、cookie,并关闭ssl证书验证,搜了很多文章,都说用HttpsURLConnection发起请求,但不知为啥在封装body参数的时候一直报400封装出错,也欢迎指出不足…...

windows系统nodeJs报错node-sass npm ERR! command failed
报错信息 npm WARN deprecated request2.88.2: request has been deprecated, see https://github.com/request/request/issues/3142 npm WARN deprecated tar2.2.2: This version of tar is no longer supported, and will not receive security updates. Please upgrade asa…...

从零构建属于自己的GPT系列5:模型部署1(文本生成函数解读、模型本地化部署、文本生成文本网页展示、代码逐行解读)
🚩🚩🚩Hugging Face 实战系列 总目录 有任何问题欢迎在下面留言 本篇文章的代码运行界面均在PyCharm中进行 本篇文章配套的代码资源已经上传 从零构建属于自己的GPT系列1:数据预处理 从零构建属于自己的GPT系列2:模型训…...

电脑篇——360浏览器打开新标签页自定义,和关闭360导航(强迫症福音)
1.点击“”按钮打开新标签页时会自动打开“资讯聚合”页面,如下图。 如何让我们打开新标签页可以自定义呢(如我这般强迫症必须要新打开的页面干干净净)? 方法:点击号打开新标签页后,在新标签页界面上找到…...

常见的Linux基本指令
目录 什么是Linux? Xshell如何远程控制云服务器 Xshell远程连接云服务器 Linux基本指令 用户管理指令 pwd指令 touch指令 mkdir指令 ls指令 cd指令 rm指令 man命令 cp指令 mv指令 cat指令 head指令 编辑 tail指令 编辑echo指令 find命令 gr…...
Leetcode 3576. Transform Array to All Equal Elements
Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接:3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到…...
AspectJ 在 Android 中的完整使用指南
一、环境配置(Gradle 7.0 适配) 1. 项目级 build.gradle // 注意:沪江插件已停更,推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...
Fabric V2.5 通用溯源系统——增加图片上传与下载功能
fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...

嵌入式学习笔记DAY33(网络编程——TCP)
一、网络架构 C/S (client/server 客户端/服务器):由客户端和服务器端两个部分组成。客户端通常是用户使用的应用程序,负责提供用户界面和交互逻辑 ,接收用户输入,向服务器发送请求,并展示服务…...
JavaScript 数据类型详解
JavaScript 数据类型详解 JavaScript 数据类型分为 原始类型(Primitive) 和 对象类型(Object) 两大类,共 8 种(ES11): 一、原始类型(7种) 1. undefined 定…...

【JVM】Java虚拟机(二)——垃圾回收
目录 一、如何判断对象可以回收 (一)引用计数法 (二)可达性分析算法 二、垃圾回收算法 (一)标记清除 (二)标记整理 (三)复制 (四ÿ…...

【p2p、分布式,区块链笔记 MESH】Bluetooth蓝牙通信 BLE Mesh协议的拓扑结构 定向转发机制
目录 节点的功能承载层(GATT/Adv)局限性: 拓扑关系定向转发机制定向转发意义 CG 节点的功能 节点的功能由节点支持的特性和功能决定。所有节点都能够发送和接收网格消息。节点还可以选择支持一个或多个附加功能,如 Configuration …...
c# 局部函数 定义、功能与示例
C# 局部函数:定义、功能与示例 1. 定义与功能 局部函数(Local Function)是嵌套在另一个方法内部的私有方法,仅在包含它的方法内可见。 • 作用:封装仅用于当前方法的逻辑,避免污染类作用域,提升…...

消息队列系统设计与实践全解析
文章目录 🚀 消息队列系统设计与实践全解析🔍 一、消息队列选型1.1 业务场景匹配矩阵1.2 吞吐量/延迟/可靠性权衡💡 权衡决策框架 1.3 运维复杂度评估🔧 运维成本降低策略 🏗️ 二、典型架构设计2.1 分布式事务最终一致…...

在 Visual Studio Code 中使用驭码 CodeRider 提升开发效率:以冒泡排序为例
目录 前言1 插件安装与配置1.1 安装驭码 CodeRider1.2 初始配置建议 2 示例代码:冒泡排序3 驭码 CodeRider 功能详解3.1 功能概览3.2 代码解释功能3.3 自动注释生成3.4 逻辑修改功能3.5 单元测试自动生成3.6 代码优化建议 4 驭码的实际应用建议5 常见问题与解决建议…...