【深度学习目标检测】六、基于深度学习的路标识别(python,目标检测,yolov8)
YOLOv8是一种物体检测算法,是YOLO系列算法的最新版本。
YOLO(You Only Look Once)是一种实时物体检测算法,其优势在于快速且准确的检测结果。YOLOv8在之前的版本基础上进行了一系列改进和优化,提高了检测速度和准确性。
YOLOv8采用了Darknet-53作为其基础网络架构。Darknet-53是一个53层的卷积神经网络,用于提取图像特征。与传统的卷积神经网络相比,Darknet-53具有更深的网络结构和更多的卷积层,可以更好地捕捉图像中的细节和语义信息。
在YOLOv8中,还使用了一些技术来提高检测性能。首先是使用了多尺度检测。YOLOv8在不同的尺度上检测物体,这样可以更好地处理物体的大小变化和远近距离差异。其次是利用了FPN(Feature Pyramid Network)结构来提取多尺度特征。FPN可以将不同层级的特征图进行融合,使得算法对不同大小的物体都有较好的适应性。
此外,YOLOv8还利用了一种称为CSPDarknet的网络结构来减少计算量。CSPDarknet使用了CSP(Cross Stage Partial)结构,在网络的前向和后向传播过程中进行特征融合,从而减少了网络的参数量和计算量。
在训练阶段,YOLOv8使用了一种称为CutMix的数据增强技术。CutMix将不同图像的一部分进行混合,从而增加了数据的多样性和鲁棒性。
总而言之,YOLOv8是一种快速而准确的物体检测算法,它通过引入Darknet-53网络、多尺度检测、FPN结构、CSPDarknet结构和CutMix数据增强等技术,实现了对不同大小和距离的物体进行快速、准确的检测。
本文介绍了基于Yolov8的路标检测模型,包括训练过程和数据准备过程,同时提供了推理的代码。对准备计算机视觉相关的毕业设计的同学有着一定的帮助。
效果如下图:

一、安装YoloV8
yolov8官方文档:主页 - Ultralytics YOLOv8 文档
安装部分参考:官方安装教程
二、数据集准备
路标检测数据集,检测4种路标:speedlimit,crosswalk,trafficlight,stop。总共877张图,其中训练集701张图、测试集176张图。
示例图片如下:


原始的数据格式为COCO格式,本文提供转换好的yolov8格式数据集,,可以直接放入yolov8中训练,数据集地址:路标数据集yolov8格式
三、模型训练
1、数据集配置文件
在ultralytics/ultralytics/cfg/datasets目录下添加roadsign.yaml,添加以下内容(path修改为自己的路径):
# Ultralytics YOLO 🚀, AGPL-3.0 license
# COCO 2017 dataset http://cocodataset.org by Microsoft
# Example usage: yolo train data=coco.yaml
# parent
# ├── ultralytics
# └── datasets
# └── coco ← downloads here (20.1 GB)# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: datasets/roadsign/roadsign-yolov8 # 修改为自己的数据路径
train: images/train
val: images/val
test: images/val # Classes
names:# 0: normal0: speedlimit # speedlimit,crosswalk,trafficlight,stop1: crosswalk2: trafficlight3: stop
2、修改模型配置文件
在ultralytics/ultralytics/cfg/models/v8目录下添加yolov8n_roadsign.yaml,添加以下内容:
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 4 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPs# s: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPs# m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPs# l: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs# x: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, SPPF, [1024, 5]] # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]] # cat backbone P4- [-1, 3, C2f, [512]] # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]] # cat backbone P3- [-1, 3, C2f, [256]] # 15 (P3/8-small)- [-1, 1, PolarizedSelfAttention, [256]] # 16- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]] # cat head P4- [-1, 3, C2f, [512]] # 18 (P4/16-medium)- [-1, 1, PolarizedSelfAttention, [512]] # 20- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]] # cat head P5- [-1, 3, C2f, [1024]] # 21 (P5/32-large)- [-1, 1, PolarizedSelfAttention, [1024]] # 24- [[16, 20, 24], 1, Detect, [nc]] # Detect(P3, P4, P5)
3、训练模型
使用如下命令训练模型,相关路径更改为自己的路径,建议绝对路径:
yolo detect train project=deploy name=yolov8_roadsign exist_ok=True optimizer=auto val=True amp=True epochs=100 imgsz=640 model=ultralytics/ultralytics/cfg/models/v8/yolov8_roadsign.yaml data=ultralytics/ultralytics/cfg/datasets/roadsign.yaml
4、验证模型
使用如下命令验证模型,相关路径根据需要修改:
yolo detect val imgsz=640 model=deploy/yolov8_roadsign/weights/best.pt data=ultralytics/ultralytics/cfg/datasets/roadsign.yaml
精度如下图:

四、推理
训练好了模型,可以使用如下代码实现推理,将权重放到同级目录:
from PIL import Image
from ultralytics import YOLO# 加载预训练的YOLOv8n模型
model = YOLO('best.pt')# 在'bus.jpg'上运行推理
image_path = 'road582.png'
results = model(image_path) # 结果列表# 展示结果
for r in results:im_array = r.plot() # 绘制包含预测结果的BGR numpy数组im = Image.fromarray(im_array[..., ::-1]) # RGB PIL图像im.show() # 显示图像im.save('results.jpg') # 保存图像
本教程训练好的权重和推理代码、示例代码连接:推理代码和训练好的权重
相关文章:
【深度学习目标检测】六、基于深度学习的路标识别(python,目标检测,yolov8)
YOLOv8是一种物体检测算法,是YOLO系列算法的最新版本。 YOLO(You Only Look Once)是一种实时物体检测算法,其优势在于快速且准确的检测结果。YOLOv8在之前的版本基础上进行了一系列改进和优化,提高了检测速度和准确性。…...
Vue3上传图片和删除图片
<div class"illness-img"><van-uploader:after-read"onAfterRead"delete"onDeleteImg"v-model"fileList"max-count"9":max-size"5 * 1024 * 1024"upload-icon"photo-o"upload-text"上传图…...
华为配置VRRP负载分担示例
组网需求 如图1所示,HostA和HostC通过Switch双归属到SwitchA和SwitchB。为减轻SwitchA上数据流量的承载压力,HostA以SwitchA为默认网关接入Internet,SwitchB作为备份网关;HostC以SwitchB为默认网关接入Internet,Switc…...
【Python】按升序排列 Excel 工作表
发现按名称对 Excel 工作表进行排序很麻烦,因此创建了一个代码来使用 Python 的 openpyxl 对它们进行排序。 1. 本次创建的代码概述 在GUI中指定一个Excel文件(使用Tkinter。这是一个标准模块,因此不需要安装)加载Excel文件&…...
定时器TIM HAL库+cubeMX(上)
定时器时钟源APB1 36MHz 一.基本定时器 1.基本框图 2.溢出时间计算 3.配置定时器步骤 TIM_HandleTypeDef g_timx_handle;/* 定时器中断初始化函数 */ void btim_timx_int_init(uint16_t arr, uint16_t psc) {g_timx_handle.Instance TIM6;g_timx_handle.Init.Prescaler p…...
我常用的几个经典Python模块
Python常用的模块非常多,主要分为内置模块和第三方模块两大类,且不同模块应用场景不同又可以分为文本类、数据结构类、数学运算类、文件系统类、爬虫类、网络通讯类等多个类型。 大家常用的内置模块比如:math、re、datetime、urllib、os、ra…...
课堂练习4.4:页式虚存
4-7 课堂练习4.4:页式虚存 缺页异常在 Linux 内核处理中占有非常重要的位置,很多 Linux 特性,如写时复制,页框延迟分配,内存回收中的磁盘和内存交换,都需要借助缺页异常来进行。 本实训分析 Linux 0.11 的…...
javascript实现Stack(栈)数据结构
上一篇文章我们理解了List这种数据结构,知道了它的特点和一些使用场景,这篇文章我们就来看一下栈这种数据结构,这里的栈可不是客栈哦,哈哈 栈其实和List非常像,使用javascript实现都是基于数组来实现 尝试理解Stack …...
Layui深入
1、代码: <!DOCTYPE html> <html> <head> <meta charset"utf-8"> <title>注册页面</title> <style> .container { max-width: 600px; margin: 0 auto; padding: 20px; …...
网络层--TCP/UDP协议
目录 一、TCP/UDP协议介绍 1、UDP(User Datagram Protocol)--用户数据报协议 1.1 UDP报文格式 1.2 UDP协议的特性 2、TCP(Transmission Control Protocol )--传输控制协议 2.1 TCP报文格式 2.2 TCP协议的特性 2.3 TCP三次握手 2.4 四次挥手 三、TCP和UDP的区别 四、t…...
前端发送请求之参数处理---multipart/form-data与application/x-www-form-urlencoded
Content-Type就是指 HTTP 发送信息至服务器时的内容编码类型,服务器根据编码类型使用特定的解析方式,获取数据流中的数据。 其实前后端发送请求的方式有 text/plain、application/json、application/x-www-form-urlencoded、 multipart/form-data等&…...
解决Ubuntu16.04没声音
第一步:安装 PulseAudio Volum Control Ubuntu没有声音(听不到声音)的解决方法 第二步:No cards available for configuration 【解决Ubuntu18.04没声音:No cards available for configuration】 完美解决…...
12.14每日一题(备战蓝桥杯归并排序)
12.14每日一题(备战蓝桥杯归并排序) 题目 归并排序 给定你一个长度为 n 的整数数列。 请你使用归并排序对这个数列按照从小到大进行排序。 并将排好序的数列按顺序输出。 输入格式 输入共两行,第一行包含整数 n。 第二行包含 n 个整数&…...
面试__Java常见异常有哪些?
java.lang.IllegalAccessError:违法访问错误。当一个应用试图访问、修改某个类的域(Field)或 者调用其方法,但是又违反域或方法的可见性声明,则抛出该异常。 java.lang.InstantiationError:实例化错误。当…...
linux 网络子系统 摘要
当你输入一个网址并按下回车键的时候,首先,应用层协议对该请求包做了格式定义;紧接着传输层协议加上了双方的端口号,确认了双方通信的应用程序;然后网络协议加上了双方的IP地址,确认了双方的网络位置;最后链路层协议加上了双方的M…...
java发起http、https请求,并携带cookie、header,post参数放body并可选关闭ssl证书验证,高可用版
公司有个需求是发起https请求对接国家数据接口,需要带header、cookie,并关闭ssl证书验证,搜了很多文章,都说用HttpsURLConnection发起请求,但不知为啥在封装body参数的时候一直报400封装出错,也欢迎指出不足…...
windows系统nodeJs报错node-sass npm ERR! command failed
报错信息 npm WARN deprecated request2.88.2: request has been deprecated, see https://github.com/request/request/issues/3142 npm WARN deprecated tar2.2.2: This version of tar is no longer supported, and will not receive security updates. Please upgrade asa…...
从零构建属于自己的GPT系列5:模型部署1(文本生成函数解读、模型本地化部署、文本生成文本网页展示、代码逐行解读)
🚩🚩🚩Hugging Face 实战系列 总目录 有任何问题欢迎在下面留言 本篇文章的代码运行界面均在PyCharm中进行 本篇文章配套的代码资源已经上传 从零构建属于自己的GPT系列1:数据预处理 从零构建属于自己的GPT系列2:模型训…...
电脑篇——360浏览器打开新标签页自定义,和关闭360导航(强迫症福音)
1.点击“”按钮打开新标签页时会自动打开“资讯聚合”页面,如下图。 如何让我们打开新标签页可以自定义呢(如我这般强迫症必须要新打开的页面干干净净)? 方法:点击号打开新标签页后,在新标签页界面上找到…...
常见的Linux基本指令
目录 什么是Linux? Xshell如何远程控制云服务器 Xshell远程连接云服务器 Linux基本指令 用户管理指令 pwd指令 touch指令 mkdir指令 ls指令 cd指令 rm指令 man命令 cp指令 mv指令 cat指令 head指令 编辑 tail指令 编辑echo指令 find命令 gr…...
web vue 项目 Docker化部署
Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段: 构建阶段(Build Stage):…...
stm32G473的flash模式是单bank还是双bank?
今天突然有人stm32G473的flash模式是单bank还是双bank?由于时间太久,我真忘记了。搜搜发现,还真有人和我一样。见下面的链接:https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...
【WiFi帧结构】
文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成:MAC头部frame bodyFCS,其中MAC是固定格式的,frame body是可变长度。 MAC头部有frame control,duration,address1,address2,addre…...
如何在看板中体现优先级变化
在看板中有效体现优先级变化的关键措施包括:采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中,设置任务排序规则尤其重要,因为它让看板视觉上直观地体…...
基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容
基于 UniApp + WebSocket实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...
高频面试之3Zookeeper
高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个?3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制(过半机制࿰…...
安卓基础(aar)
重新设置java21的环境,临时设置 $env:JAVA_HOME "D:\Android Studio\jbr" 查看当前环境变量 JAVA_HOME 的值 echo $env:JAVA_HOME 构建ARR文件 ./gradlew :private-lib:assembleRelease 目录是这样的: MyApp/ ├── app/ …...
云原生玩法三问:构建自定义开发环境
云原生玩法三问:构建自定义开发环境 引言 临时运维一个古董项目,无文档,无环境,无交接人,俗称三无。 运行设备的环境老,本地环境版本高,ssh不过去。正好最近对 腾讯出品的云原生 cnb 感兴趣&…...
华为OD机考-机房布局
import java.util.*;public class DemoTest5 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseSystem.out.println(solve(in.nextLine()));}}priv…...
【Elasticsearch】Elasticsearch 在大数据生态圈的地位 实践经验
Elasticsearch 在大数据生态圈的地位 & 实践经验 1.Elasticsearch 的优势1.1 Elasticsearch 解决的核心问题1.1.1 传统方案的短板1.1.2 Elasticsearch 的解决方案 1.2 与大数据组件的对比优势1.3 关键优势技术支撑1.4 Elasticsearch 的竞品1.4.1 全文搜索领域1.4.2 日志分析…...
