当前位置: 首页 > news >正文

矩阵理论及其应用邱启荣习题3.5题解

(1) P= ( − 1 0 1 − 1 − 1 2 1 1 − 1 ) \begin{pmatrix} -1 & 0&1 \\ -1 & -1&2\\1&1&-1 \end{pmatrix} 111011121
A= ( 1 0 1 1 1 0 − 1 2 1 ) \begin{pmatrix} 1 & 0&1 \\ 1 & 1&0\\-1&2&1 \end{pmatrix} 111012101
B=P − 1 ^{-1} 1AP= ( − 2 − 3 5 0 0 2 − 2 − 2 5 ) \begin{pmatrix} -2 & -3&5 \\ 0 & 0&2\\-2&-2&5 \end{pmatrix} 202302525
( 2 ) T ( α ) = T ( α 1 ) + 6 T ( α 2 ) − T ( α 3 ) = ( 1 , 0 , 1 ) + ( 6 , 6 , 0 ) + ( 1 , − 2 , − 1 ) = ( 8 , 4 , 0 ) \begin{aligned}(2)\space T(\alpha)&=T(\alpha_1)+6T(\alpha_2)-T(\alpha_3)\\&=(1,0,1)+(6,6,0)+(1,-2,-1)\\&=(8,4,0) \end{aligned} (2) T(α)=T(α1)+6T(α2)T(α3)=(1,0,1)+(6,6,0)+(1,2,1)=(8,4,0)
T ( β ) = T ( e 1 ) − T ( e 2 ) + T ( e 3 ) = ( − 2 , − 3 , 5 ) + ( 0 , 0 , − 2 ) + ( − 2 , − 2 , 5 ) = ( − 4 , − 5 , 8 ) \begin{aligned}T(\beta)&=T(e_1)-T(e_2)+T(e_3)\\&=(-2,-3,5)+(0,0,-2)+(-2,-2,5)\\&=(-4,-5,8) \end{aligned} T(β)=T(e1)T(e2)+T(e3)=(2,3,5)+(0,0,2)+(2,2,5)=(4,5,8)
注意 α \alpha α是行向量

相关文章:

矩阵理论及其应用邱启荣习题3.5题解

(1) P ( − 1 0 1 − 1 − 1 2 1 1 − 1 ) \begin{pmatrix} -1 & 0&1 \\ -1 & -1&2\\1&1&-1 \end{pmatrix} ​−1−11​0−11​12−1​ ​ A ( 1 0 1 1 1 0 − 1 2 1 ) \begin{pmatrix} 1 & 0&1 \\ 1 & 1&0\\-1&2&1 \end{pmat…...

Java面试题(每天10题)-------连载(49)

目录 Tomcat篇 1、Tomcat的缺省端口是多少?怎么修改? 2、Tomcat有哪几种Connector运行模式(优化)? 3、Tomcat有几种部署方式? 4、Tomcat容器时如何创建servlet类实例?用到了什么原理&…...

python——数据类型

数据类型目录 前言一、Number(数字)数字类型转换:二、String(字符串)常用字符串运算符:字符串格式化:三、Tuple(元组)常用运算符四、List(列表)嵌套列表:常用列表操作:五、Dictionary(字典)六、Set(集合)...

hive中如何求取中位数?

目录 中位数的概念代码实现准备数据实现 中位数的概念 中位数(Median)又称中值,统计学中的专有名词,是按顺序排列的一组数据中居于中间位置的数,代表一个样本、种群或概率分布中的一个数值,其可将数值集合…...

在C#中异步编程

在C#中,异步编程是一种编写并发和响应式代码的技术,通过将耗时的操作放在后台线程中执行,以避免阻塞主线程,提高程序的性能和响应性。异步编程使用async和await关键字,结合任务(Task)和异步操作…...

微服务保护--Feign整合Sentinel

限流是一种预防措施,虽然限流可以尽量避免因高并发而引起的服务故障,但服务还会因为其它原因而故障。而要将这些故障控制在一定范围,避免雪崩,就要靠线程隔离(舱壁模式)和熔断降级手段了。 线程隔离之前讲到…...

二进制to十六进制

输入小于等于十六位的二进制数据&#xff0c;输出十六进制数据&#xff1b; #include <stdio.h> #include <stdlib.h> #include <math.h>int main(void) {char arr[16] { 0 }; int array[16] { 0 }; int hex[4] { 0 };int i 0; int num 0;scanf("…...

Logistic 回归算法

Logistic 回归 Logistic 回归算法Logistic 回归简述Sigmoid 函数Logistic 回归模型表达式求解参数 $\theta $梯度上升优化算法 Logistic 回归简单实现使用 sklearn 构建 Logistic 回归分类器Logistic 回归算法的优缺点 Logistic 回归算法 Logistic 回归简述 Logistic 回归是一…...

ubuntu安装详细步骤

一&#xff0c;先下载vmware 1&#xff0c;第一步打开上面链接 下载网址 : https://www.vmware.com/products/workstation-pro/wo rkstation-pro-evaluation.html 许可证 JU090-6039P-08409-8J0QH-2YR7F ZF3R0-FHED2-M80TY-8QYGC-NPKYF FC7D0-D1YDL-M8DXZ-CYPZE-P2AY6 ZC3T…...

力扣5. 最长回文子串

动态规划 思路&#xff1a; 假设 dp[i][j] 为字符串 (i, j) 子串是否为回文的结果&#xff1b;那么 dp[i][j] dp[i 1][j - 1] 且 (s[i] s[j])&#xff1b;长度为1的字符串都是回文&#xff1b; 原字符串长度为1&#xff0c;是回文&#xff1b;原字符串子串长度为1&#xff…...

肆[4],函数VectorToHomMat2d/AffineTransPoint2d

函数VectorToHomMat2d C形式 LIntExport void VectorToHomMat2d( const HTuple& Px, const HTuple& Py, const HTuple& Qx, const HTuple& Qy, HTuple* HomMat2D);//参数1:图像坐标X数组 //参数2:图像坐标Y数组 //参数3:世界坐标X数组 //参数4:世界坐标Y…...

下载文件 后端返回给前端 response header 响应头

当浏览器在请求资源时&#xff0c;会通过http返回头中的content-type决定如何显示/处理将要加载的数据&#xff0c;如果这个类型浏览器能够支持阅览&#xff0c;浏览器就会直接展示该资源&#xff0c;比如png、jpeg、video等格式。在某些下载文件的场景中&#xff0c;服务端可能…...

lvs负载均集群

目录 NAT模式 LVS负载均衡群集部署 1.部署共享存储 2.配置节点服务器 192.168.17.130 ​编辑 192.168.17.133 3.配置负载调度器 4.测试效果 NAT模式 LVS负载均衡群集部署 负载调度器&#xff1a;内网关 ens33&#xff1a;192.168.17.70&#xff0c;外网关 ens36&#x…...

luttuce(RedisTempate)实现hash expire lua脚本

话不多说先放脚本&#xff1a; local argv ARGV local length #argv if length > 0 then local unpackArgs {} for i 1, length - 1 dotable.insert(unpackArgs, argv[i]) end if redis.call(exists, KEYS[1]) 1 thenredis.call(del, KEYS[1])redis.call(hset, KEYS[…...

【Xamarin】WebView连接局域网自动跳转外部浏览器问题的解决

xamarin在中国用的很少&#xff0c;但也有一些独到之处。例如用惯了Visual Studio的就很合适。而且类Java开发&#xff0c;几乎没什么障碍。 protected override void OnCreate(Bundle savedInstanceState) {base.OnCreate(savedInstanceState);Xamarin.Essentials.Platform.I…...

【Unity动画】实现不同的肢体动作自由搭配播放Layer+Avatar Mask

这个教程教你学会使用Unity 动画层配合布偶遮罩&#xff08;AvaterMask&#xff09; 实现从2个动画身上只保留部分肢体动作&#xff0c;然后搭配播放 例如&#xff1a;一个正常跑的动画片段&#xff0c;我只保留腿部动作&#xff0c;形成一个层叫Run_leg 然后在从一个攻击动作…...

将0x06(16进制)转换为二进制

将0x06&#xff08;16进制&#xff09;转换为二进制&#xff0c;可以按照如下步骤进行&#xff1a; 1. 将0x06中的字母"0x"去除。 2. 将数字"06"中的数字"0"去除。 3. 将数字"06"转换为二进制。 根据步骤1和步骤2&#xff0c;去除&q…...

考PRINCE2有用么?有PMP证书了还需要考PRINCE2吗?

有用的&#xff0c;PMP相当于是理论&#xff0c;PRINCE2是实践&#xff0c;对小白来说pmp考后再考一个prince2是很好的选择&#xff0c;对项目管理的小白来说更好入门。 先来说下 prince 2 和 pmp 的区别 一、prince 2 是什么&#xff1f;跟PMP有什么区别&#xff1f; prince…...

06进程间关系-学习笔记

Orphan Process孤儿进程 父进程先于子进程退出&#xff0c;子进程失去托管&#xff0c;这种子进程统称为孤儿进程 失效进程&#xff08;孤儿进程&#xff09;&#xff1a;导致内存泄漏&#xff0c;影响新进程的创建孤儿进程的危害不可预测&#xff0c;如果一个孤儿进程持续的申…...

Vue的动画方式有几种

Vue的动画方式有几种&#xff1f; Vue的动画方式主要分成两大类&#xff0c;一类是CSS动画&#xff0c;一类是JS动画 CSS动画中包含transition以及animation&#xff0c;但在Vue中只需要通过transition封装组件实现。 CSS动画的类名主要包括&#xff1a;v-enter、v-enter-acti…...

业务系统对接大模型的基础方案:架构设计与关键步骤

业务系统对接大模型&#xff1a;架构设计与关键步骤 在当今数字化转型的浪潮中&#xff0c;大语言模型&#xff08;LLM&#xff09;已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中&#xff0c;不仅可以优化用户体验&#xff0c;还能为业务决策提供…...

Ubuntu系统下交叉编译openssl

一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机&#xff1a;Ubuntu 20.04.6 LTSHost&#xff1a;ARM32位交叉编译器&#xff1a;arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...

Linux 中如何提取压缩文件 ?

Linux 是一种流行的开源操作系统&#xff0c;它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间&#xff0c;使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的&#xff0c;要在 …...

计算机基础知识解析:从应用到架构的全面拆解

目录 前言 1、 计算机的应用领域&#xff1a;无处不在的数字助手 2、 计算机的进化史&#xff1a;从算盘到量子计算 3、计算机的分类&#xff1a;不止 “台式机和笔记本” 4、计算机的组件&#xff1a;硬件与软件的协同 4.1 硬件&#xff1a;五大核心部件 4.2 软件&#…...

为什么要创建 Vue 实例

核心原因:Vue 需要一个「控制中心」来驱动整个应用 你可以把 Vue 实例想象成你应用的**「大脑」或「引擎」。它负责协调模板、数据、逻辑和行为,将它们变成一个活的、可交互的应用**。没有这个实例,你的代码只是一堆静态的 HTML、JavaScript 变量和函数,无法「活」起来。 …...

Linux部署私有文件管理系统MinIO

最近需要用到一个文件管理服务&#xff0c;但是又不想花钱&#xff0c;所以就想着自己搭建一个&#xff0c;刚好我们用的一个开源框架已经集成了MinIO&#xff0c;所以就选了这个 我这边对文件服务性能要求不是太高&#xff0c;单机版就可以 安装非常简单&#xff0c;几个命令就…...

6个月Python学习计划 Day 16 - 面向对象编程(OOP)基础

第三周 Day 3 &#x1f3af; 今日目标 理解类&#xff08;class&#xff09;和对象&#xff08;object&#xff09;的关系学会定义类的属性、方法和构造函数&#xff08;init&#xff09;掌握对象的创建与使用初识封装、继承和多态的基本概念&#xff08;预告&#xff09; &a…...

TJCTF 2025

还以为是天津的。这个比较容易&#xff0c;虽然绕了点弯&#xff0c;可还是把CP AK了&#xff0c;不过我会的别人也会&#xff0c;还是没啥名次。记录一下吧。 Crypto bacon-bits with open(flag.txt) as f: flag f.read().strip() with open(text.txt) as t: text t.read…...

Java后端检查空条件查询

通过抛出运行异常&#xff1a;throw new RuntimeException("请输入查询条件&#xff01;");BranchWarehouseServiceImpl.java // 查询试剂交易&#xff08;入库/出库&#xff09;记录Overridepublic List<BranchWarehouseTransactions> queryForReagent(Branch…...

麒麟系统使用-进行.NET开发

文章目录 前言一、搭建dotnet环境1.获取相关资源2.配置dotnet 二、使用dotnet三、其他说明总结 前言 麒麟系统的内核是基于linux的&#xff0c;如果需要进行.NET开发&#xff0c;则需要安装特定的应用。由于NET Framework 是仅适用于 Windows 版本的 .NET&#xff0c;所以要进…...