当前位置: 首页 > news >正文

矩阵理论及其应用邱启荣习题3.5题解

(1) P= ( − 1 0 1 − 1 − 1 2 1 1 − 1 ) \begin{pmatrix} -1 & 0&1 \\ -1 & -1&2\\1&1&-1 \end{pmatrix} 111011121
A= ( 1 0 1 1 1 0 − 1 2 1 ) \begin{pmatrix} 1 & 0&1 \\ 1 & 1&0\\-1&2&1 \end{pmatrix} 111012101
B=P − 1 ^{-1} 1AP= ( − 2 − 3 5 0 0 2 − 2 − 2 5 ) \begin{pmatrix} -2 & -3&5 \\ 0 & 0&2\\-2&-2&5 \end{pmatrix} 202302525
( 2 ) T ( α ) = T ( α 1 ) + 6 T ( α 2 ) − T ( α 3 ) = ( 1 , 0 , 1 ) + ( 6 , 6 , 0 ) + ( 1 , − 2 , − 1 ) = ( 8 , 4 , 0 ) \begin{aligned}(2)\space T(\alpha)&=T(\alpha_1)+6T(\alpha_2)-T(\alpha_3)\\&=(1,0,1)+(6,6,0)+(1,-2,-1)\\&=(8,4,0) \end{aligned} (2) T(α)=T(α1)+6T(α2)T(α3)=(1,0,1)+(6,6,0)+(1,2,1)=(8,4,0)
T ( β ) = T ( e 1 ) − T ( e 2 ) + T ( e 3 ) = ( − 2 , − 3 , 5 ) + ( 0 , 0 , − 2 ) + ( − 2 , − 2 , 5 ) = ( − 4 , − 5 , 8 ) \begin{aligned}T(\beta)&=T(e_1)-T(e_2)+T(e_3)\\&=(-2,-3,5)+(0,0,-2)+(-2,-2,5)\\&=(-4,-5,8) \end{aligned} T(β)=T(e1)T(e2)+T(e3)=(2,3,5)+(0,0,2)+(2,2,5)=(4,5,8)
注意 α \alpha α是行向量

相关文章:

矩阵理论及其应用邱启荣习题3.5题解

(1) P ( − 1 0 1 − 1 − 1 2 1 1 − 1 ) \begin{pmatrix} -1 & 0&1 \\ -1 & -1&2\\1&1&-1 \end{pmatrix} ​−1−11​0−11​12−1​ ​ A ( 1 0 1 1 1 0 − 1 2 1 ) \begin{pmatrix} 1 & 0&1 \\ 1 & 1&0\\-1&2&1 \end{pmat…...

Java面试题(每天10题)-------连载(49)

目录 Tomcat篇 1、Tomcat的缺省端口是多少?怎么修改? 2、Tomcat有哪几种Connector运行模式(优化)? 3、Tomcat有几种部署方式? 4、Tomcat容器时如何创建servlet类实例?用到了什么原理&…...

python——数据类型

数据类型目录 前言一、Number(数字)数字类型转换:二、String(字符串)常用字符串运算符:字符串格式化:三、Tuple(元组)常用运算符四、List(列表)嵌套列表:常用列表操作:五、Dictionary(字典)六、Set(集合)...

hive中如何求取中位数?

目录 中位数的概念代码实现准备数据实现 中位数的概念 中位数(Median)又称中值,统计学中的专有名词,是按顺序排列的一组数据中居于中间位置的数,代表一个样本、种群或概率分布中的一个数值,其可将数值集合…...

在C#中异步编程

在C#中,异步编程是一种编写并发和响应式代码的技术,通过将耗时的操作放在后台线程中执行,以避免阻塞主线程,提高程序的性能和响应性。异步编程使用async和await关键字,结合任务(Task)和异步操作…...

微服务保护--Feign整合Sentinel

限流是一种预防措施,虽然限流可以尽量避免因高并发而引起的服务故障,但服务还会因为其它原因而故障。而要将这些故障控制在一定范围,避免雪崩,就要靠线程隔离(舱壁模式)和熔断降级手段了。 线程隔离之前讲到…...

二进制to十六进制

输入小于等于十六位的二进制数据&#xff0c;输出十六进制数据&#xff1b; #include <stdio.h> #include <stdlib.h> #include <math.h>int main(void) {char arr[16] { 0 }; int array[16] { 0 }; int hex[4] { 0 };int i 0; int num 0;scanf("…...

Logistic 回归算法

Logistic 回归 Logistic 回归算法Logistic 回归简述Sigmoid 函数Logistic 回归模型表达式求解参数 $\theta $梯度上升优化算法 Logistic 回归简单实现使用 sklearn 构建 Logistic 回归分类器Logistic 回归算法的优缺点 Logistic 回归算法 Logistic 回归简述 Logistic 回归是一…...

ubuntu安装详细步骤

一&#xff0c;先下载vmware 1&#xff0c;第一步打开上面链接 下载网址 : https://www.vmware.com/products/workstation-pro/wo rkstation-pro-evaluation.html 许可证 JU090-6039P-08409-8J0QH-2YR7F ZF3R0-FHED2-M80TY-8QYGC-NPKYF FC7D0-D1YDL-M8DXZ-CYPZE-P2AY6 ZC3T…...

力扣5. 最长回文子串

动态规划 思路&#xff1a; 假设 dp[i][j] 为字符串 (i, j) 子串是否为回文的结果&#xff1b;那么 dp[i][j] dp[i 1][j - 1] 且 (s[i] s[j])&#xff1b;长度为1的字符串都是回文&#xff1b; 原字符串长度为1&#xff0c;是回文&#xff1b;原字符串子串长度为1&#xff…...

肆[4],函数VectorToHomMat2d/AffineTransPoint2d

函数VectorToHomMat2d C形式 LIntExport void VectorToHomMat2d( const HTuple& Px, const HTuple& Py, const HTuple& Qx, const HTuple& Qy, HTuple* HomMat2D);//参数1:图像坐标X数组 //参数2:图像坐标Y数组 //参数3:世界坐标X数组 //参数4:世界坐标Y…...

下载文件 后端返回给前端 response header 响应头

当浏览器在请求资源时&#xff0c;会通过http返回头中的content-type决定如何显示/处理将要加载的数据&#xff0c;如果这个类型浏览器能够支持阅览&#xff0c;浏览器就会直接展示该资源&#xff0c;比如png、jpeg、video等格式。在某些下载文件的场景中&#xff0c;服务端可能…...

lvs负载均集群

目录 NAT模式 LVS负载均衡群集部署 1.部署共享存储 2.配置节点服务器 192.168.17.130 ​编辑 192.168.17.133 3.配置负载调度器 4.测试效果 NAT模式 LVS负载均衡群集部署 负载调度器&#xff1a;内网关 ens33&#xff1a;192.168.17.70&#xff0c;外网关 ens36&#x…...

luttuce(RedisTempate)实现hash expire lua脚本

话不多说先放脚本&#xff1a; local argv ARGV local length #argv if length > 0 then local unpackArgs {} for i 1, length - 1 dotable.insert(unpackArgs, argv[i]) end if redis.call(exists, KEYS[1]) 1 thenredis.call(del, KEYS[1])redis.call(hset, KEYS[…...

【Xamarin】WebView连接局域网自动跳转外部浏览器问题的解决

xamarin在中国用的很少&#xff0c;但也有一些独到之处。例如用惯了Visual Studio的就很合适。而且类Java开发&#xff0c;几乎没什么障碍。 protected override void OnCreate(Bundle savedInstanceState) {base.OnCreate(savedInstanceState);Xamarin.Essentials.Platform.I…...

【Unity动画】实现不同的肢体动作自由搭配播放Layer+Avatar Mask

这个教程教你学会使用Unity 动画层配合布偶遮罩&#xff08;AvaterMask&#xff09; 实现从2个动画身上只保留部分肢体动作&#xff0c;然后搭配播放 例如&#xff1a;一个正常跑的动画片段&#xff0c;我只保留腿部动作&#xff0c;形成一个层叫Run_leg 然后在从一个攻击动作…...

将0x06(16进制)转换为二进制

将0x06&#xff08;16进制&#xff09;转换为二进制&#xff0c;可以按照如下步骤进行&#xff1a; 1. 将0x06中的字母"0x"去除。 2. 将数字"06"中的数字"0"去除。 3. 将数字"06"转换为二进制。 根据步骤1和步骤2&#xff0c;去除&q…...

考PRINCE2有用么?有PMP证书了还需要考PRINCE2吗?

有用的&#xff0c;PMP相当于是理论&#xff0c;PRINCE2是实践&#xff0c;对小白来说pmp考后再考一个prince2是很好的选择&#xff0c;对项目管理的小白来说更好入门。 先来说下 prince 2 和 pmp 的区别 一、prince 2 是什么&#xff1f;跟PMP有什么区别&#xff1f; prince…...

06进程间关系-学习笔记

Orphan Process孤儿进程 父进程先于子进程退出&#xff0c;子进程失去托管&#xff0c;这种子进程统称为孤儿进程 失效进程&#xff08;孤儿进程&#xff09;&#xff1a;导致内存泄漏&#xff0c;影响新进程的创建孤儿进程的危害不可预测&#xff0c;如果一个孤儿进程持续的申…...

Vue的动画方式有几种

Vue的动画方式有几种&#xff1f; Vue的动画方式主要分成两大类&#xff0c;一类是CSS动画&#xff0c;一类是JS动画 CSS动画中包含transition以及animation&#xff0c;但在Vue中只需要通过transition封装组件实现。 CSS动画的类名主要包括&#xff1a;v-enter、v-enter-acti…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现

目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)

HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...

微信小程序之bind和catch

这两个呢&#xff0c;都是绑定事件用的&#xff0c;具体使用有些小区别。 官方文档&#xff1a; 事件冒泡处理不同 bind&#xff1a;绑定的事件会向上冒泡&#xff0c;即触发当前组件的事件后&#xff0c;还会继续触发父组件的相同事件。例如&#xff0c;有一个子视图绑定了b…...

【OSG学习笔记】Day 18: 碰撞检测与物理交互

物理引擎&#xff08;Physics Engine&#xff09; 物理引擎 是一种通过计算机模拟物理规律&#xff08;如力学、碰撞、重力、流体动力学等&#xff09;的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互&#xff0c;广泛应用于 游戏开发、动画制作、虚…...

Java如何权衡是使用无序的数组还是有序的数组

在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...

聊聊 Pulsar:Producer 源码解析

一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台&#xff0c;以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中&#xff0c;Producer&#xff08;生产者&#xff09; 是连接客户端应用与消息队列的第一步。生产者…...

[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?

论文网址&#xff1a;pdf 英文是纯手打的&#xff01;论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误&#xff0c;若有发现欢迎评论指正&#xff01;文章偏向于笔记&#xff0c;谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...

c#开发AI模型对话

AI模型 前面已经介绍了一般AI模型本地部署&#xff0c;直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型&#xff0c;但是目前国内可能使用不多&#xff0c;至少实践例子很少看见。开发训练模型就不介绍了&am…...

k8s业务程序联调工具-KtConnect

概述 原理 工具作用是建立了一个从本地到集群的单向VPN&#xff0c;根据VPN原理&#xff0c;打通两个内网必然需要借助一个公共中继节点&#xff0c;ktconnect工具巧妙的利用k8s原生的portforward能力&#xff0c;简化了建立连接的过程&#xff0c;apiserver间接起到了中继节…...

深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南

&#x1f680; C extern 关键字深度解析&#xff1a;跨文件编程的终极指南 &#x1f4c5; 更新时间&#xff1a;2025年6月5日 &#x1f3f7;️ 标签&#xff1a;C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言&#x1f525;一、extern 是什么&#xff1f;&…...