当前位置: 首页 > news >正文

原点处可微问题

文章目录

    • 原点可微问题

原点可微问题

  • lim ⁡ x → 0 , y → 0 f ( x , y ) − f ( 0 , 0 ) x 2 + y 2 \lim\limits_{x\to{0},y\to{0}} \frac{f(x,y)-f(0,0)}{\sqrt{x^2+y^2}} x0,y0limx2+y2 f(x,y)f(0,0)= 0 0 0(1)是函数 f ( x , y ) f(x,y) f(x,y) ( 0 , 0 ) (0,0) (0,0)点可微(1-1)充分条件但非必要条件
    • 考虑到 ρ ( 0 , 0 ) \rho_{(0,0)} ρ(0,0)= x 2 + y 2 \sqrt{x^2+y^2} x2+y2 (2),由式(1)可知, lim ⁡ x → 0 , y → 0 f ( x , y ) − f ( 0 , 0 ) ρ \lim\limits_{x\to{0},y\to{0}} \frac{f(x,y)-f(0,0)}{\rho} x0,y0limρf(x,y)f(0,0)= 0 0 0(3),由无穷小的阶的定义可知, f ( x , y ) − f ( 0 , 0 ) f(x,y)-f(0,0) f(x,y)f(0,0)= o ( ρ ) o(\rho) o(ρ)(4),等号左边是 ρ \rho ρ的高阶无穷小
    • 由点处可微的定义: f ( x , y ) − f ( x 0 , y 0 ) f(x,y)-f(x_0,y_0) f(x,y)f(x0,y0)= A d x + B d y + o ( ρ ) A\mathrm{d}x+B\mathrm{d}y+o(\rho) Adx+Bdy+o(ρ)(5),其中 x 0 = y 0 = 0 x_0=y_0=0 x0=y0=0,从而公式可以改写为: f ( x , y ) − f ( 0 , 0 ) f(x,y)-f(0,0) f(x,y)f(0,0)= A x + B y + o ( ρ ) Ax+By+o(\rho) Ax+By+o(ρ)(6)
    • 比较式(4,6)可以发现式(4)是式(6)中 A = B = 0 A=B=0 A=B=0(6-0)的情形,因此由(1)可以推出函数 f ( x , y ) f(x,y) f(x,y)在(0,0)处可微(6-1),并且 f x ( 0 , 0 ) f_{x}(0,0) fx(0,0)= f y ( 0 , 0 ) f_{y}(0,0) fy(0,0)= 0 0 0(6-2)
    • 反之,若有(6-1),则有式(6)成立,但是不一定有式(4)成立,也不一定有(1)成立
      • 例如取函数 f ( x , y ) f(x,y) f(x,y)= x x x,该函数在 ( 0 , 0 ) (0,0) (0,0)点处可微(满足充分条件),而该函数代入式(1),可得 lim ⁡ x → 0 , y → 0 x x 2 + y 2 \lim\limits_{x\to{0},y\to{0}} \frac{x}{\sqrt{x^2+y^2}} x0,y0limx2+y2 x,这个极限不存在,例如沿着 y = 0 y=0 y=0时,就可以发现极限式等于 lim ⁡ x → 0 , y → 0 x ∣ x ∣ \lim\limits_{x\to{0},y\to{0}} \frac{x}{|x|} x0,y0limxx不存在(因为可能取 ± 1 \pm{1} ±1,不唯一,就不存在),自然就不满足式(1)
    • 若(6-1)的基础上再附加条件 f x ( 0 , 0 ) f_{x}(0,0) fx(0,0)= f y ( 0 , 0 ) f_{y}(0,0) fy(0,0)= 0 0 0,则能推出(1),因为 A = f x ( 0 , 0 ) A=f_{x}(0,0) A=fx(0,0), B = f y ( 0 , 0 ) B=f_{y}(0,0) B=fy(0,0),将(1)代入(6),即得(4),即有(1),这就构成了充要条件
    • 即当(6-2)时,(6)和(1)是等价的
  • 拓展:若式(1)改为 lim ⁡ x → 0 , y → 0 f ( x , y ) − f ( 0 , 0 ) x 2 + y 2 = a ≠ 0 \lim\limits_{x\to{0},y\to{0}} \frac{f(x,y)-f(0,0)}{\sqrt{x^2+y^2}}=a\neq{0} x0,y0limx2+y2 f(x,y)f(0,0)=a=0(8),则没有(4),并且可以得出 f ( x , y ) f(x,y) f(x,y) ( 0 , 0 ) (0,0) (0,0)点处不可微(9);另一方面,由(9)推不出(8)

  • f ( x , y ) f(x,y) f(x,y)= x y sin ⁡ 1 x 2 + y 2 xy\sin\frac{1}{\sqrt{x^2+y^2}} xysinx2+y2 1, ( x , y ) ≠ ( 0 , 0 ) (x,y)\neq{(0,0)} (x,y)=(0,0); f ( x , y ) f(x,y) f(x,y)= 0 0 0, ( x , y ) = ( 0 , 0 ) (x,y)=(0,0) (x,y)=(0,0)
    • A A A= lim ⁡ x → 0 , y → 0 f ( x , y ) − f ( 0 , 0 ) x 2 + y 2 \lim\limits_{x\to{0},y\to{0}} \frac{f(x,y)-f(0,0)}{\sqrt{x^2+y^2}} x0,y0limx2+y2 f(x,y)f(0,0)= lim ⁡ x → 0 , y → 0 f ( x , y ) x 2 + y 2 \lim\limits_{x\to{0},y\to{0}} \frac{f(x,y)}{\sqrt{x^2+y^2}} x0,y0limx2+y2 f(x,y)= 0 0 0,立马可以判断处 f ( x , y ) f(x,y) f(x,y) ( 0 , 0 ) (0,0) (0,0)处可微
    • 其中 A A A= lim ⁡ x → 0 , y → 0 x y x 2 + y 2 sin ⁡ 1 x 2 + y 2 \lim\limits_{x\to{0},y\to{0}} \frac{xy}{{\sqrt{x^2+y^2}}} \sin\frac{1}{\sqrt{x^2+y^2}} x0,y0limx2+y2 xysinx2+y2 1,其中 A 1 A_1 A1= lim ⁡ x → 0 , y → 0 x y x 2 + y 2 \lim\limits_{x\to{0},y\to{0}} \frac{xy}{\sqrt{x^2+y^2}} x0,y0limx2+y2 xy= 0 0 0,
      • 可以用夹逼的方式求: 0 ⩽ ∣ x y x 2 + y 2 ∣ 0\leqslant|\frac{xy}{\sqrt{x^2+y^2}}| 0x2+y2 xy= ∣ x x 2 + y 2 ∣ ∣ y ∣ |\frac{x}{\sqrt{x^2+y^2}}||y| x2+y2 x∣∣y ⩽ \leqslant ∣ y ∣ |y| y,而 lim ⁡ x → 0 , y → 0 ∣ y ∣ = 0 \lim\limits_{x\to{0},y\to{0}} |y|=0 x0,y0limy=0所以 lim ⁡ x → 0 , y → 0 ∣ x y x 2 + y 2 ∣ = 0 \lim\limits_{x\to{0},y\to{0}} |\frac{xy}{\sqrt{x^2+y^2}}|=0 x0,y0limx2+y2 xy=0,所以 A 1 A_1 A1=0
      • 从量级上粗略判断: x y xy xy x 2 + y 2 \sqrt{x^2+y^2} x2+y2 分别相当于 2 2 2次和1次项,因此分子的阶更高,极限结果为0
      • sin ⁡ 1 x 2 + y 2 \sin\frac{1}{\sqrt{x^2+y^2}} sinx2+y2 1是有界函数,从而 A A A=0

  • f ( x , y ) f(x,y) f(x,y)= x 2 y x 2 + y 2 \frac{x^2y}{x^2+y^2} x2+y2x2y, ( x , y ) ≠ ( 0 , 0 ) (x,y)\neq{(0,0)} (x,y)=(0,0); f ( x , y ) = 0 f(x,y)=0 f(x,y)=0, ( x , y ) = ( 0 , 0 ) (x,y)=(0,0) (x,y)=(0,0)
    • A A A= lim ⁡ x → 0 , y → 0 f ( x , y ) − f ( 0 , 0 ) x 2 + y 2 \lim\limits_{x\to{0},y\to{0}} \frac{f(x,y)-f(0,0)}{\sqrt{x^2+y^2}} x0,y0limx2+y2 f(x,y)f(0,0)= lim ⁡ x → 0 , y → 0 x 2 y ( x 2 + y 2 ) x 2 + y 2 \lim\limits_{x\to{0},y\to{0}} \frac{x^2y}{(x^2+y^2)\sqrt{x^2+y^2}} x0,y0lim(x2+y2)x2+y2 x2y,简便判断分子分母都是3次项的量级(同量级),因此极限不存在(可取路径 y = x y=x y=x判断)
    • f x ( 0 , 0 ) f_x(0,0) fx(0,0)= f y ( 0 , 0 ) f_{y}(0,0) fy(0,0)= 0 0 0,而 A A A不存在,所以 f ( x , y ) f(x,y) f(x,y)在(0,0)处不可微
      • f x ( 0 , 0 ) f_x(0,0) fx(0,0),可以先代入 y = 0 y=0 y=0后求对 x x x偏导,即对 f ( x , 0 ) f(x,0) f(x,0) x x x求导
      • f ( x , 0 ) f(x,0) f(x,0)= { 0 x ≠ 0 0 x = 0 \begin{cases}0&x\neq{0}\\0&x=0\end{cases} {00x=0x=0= 0 0 0,说明 f ( x , 0 ) f(x,0) f(x,0)是个恒0常数函数,类似的, f ( 0 , y ) f(0,y) f(0,y)也是恒0常数函数
      • 所以 f x ( 0 , 0 ) f_{x}(0,0) fx(0,0)= f ( x , 0 ) ′ f(x,0)' f(x,0)= 0 0 0
      • f y ( 0 , 0 ) f_{y}(0,0) fy(0,0)= f ′ ( 0 , y ) f'(0,y) f(0,y)= 0 0 0

相关文章:

原点处可微问题

文章目录 原点可微问题例例 原点可微问题 lim ⁡ x → 0 , y → 0 f ( x , y ) − f ( 0 , 0 ) x 2 y 2 \lim\limits_{x\to{0},y\to{0}} \frac{f(x,y)-f(0,0)}{\sqrt{x^2y^2}} x→0,y→0lim​x2y2 ​f(x,y)−f(0,0)​ 0 0 0(1)是函数 f ( x , y ) f(x,y) f(x,y)在 ( 0 , 0 ) (…...

Flink+Kafka消费

引入jar <dependency><groupId>org.apache.flink</groupId><artifactId>flink-java</artifactId><version>1.8.0</version> </dependency> <dependency><groupId>org.apache.flink</groupId><artifactI…...

Seconds_Behind_Master越来越大,主从同步延迟

问题现象 发现从库mysql_slave的参数Seconds_Behind_Master越来越大。已排除主从服务器时间不一致&#xff1b;那么主要就判断两点&#xff1a;是io thread慢还是 sql thread慢&#xff1f;先观察show slave status\G 。 判断3个参数&#xff08;参数后面的值是默认空闲时候的…...

除法求值[中等]

一、题目 给你一个变量对数组equations和一个实数值数组values作为已知条件&#xff0c;其中equations[i] [Ai, Bi]和values[i]共同表示等式Ai / Bi values[i]。每个Ai或Bi是一个表示单个变量的字符串。另有一些以数组queries表示的问题&#xff0c;其中queries[j] [Cj, Dj…...

新时代商业市场:AR技术的挑战与机遇并存

随着科技的不断发展&#xff0c;增强现实&#xff08;AR&#xff09;技术逐渐成为当今社会的一个重要组成部分。AR技术能够将虚拟世界与现实世界相结合&#xff0c;为人们提供更加丰富、多样化的体验。在新时代的社会商业市场中&#xff0c;AR技术也正逐渐被应用于各种商业活动…...

RHEL8中ansible的使用

编写ansible.cfg和清单文件ansible的基本用法 本章实验三台RHEL8系统&#xff08;rhel801&#xff0c;rhel802&#xff0c;rhel803&#xff09;&#xff0c;其中rhel801是ansible主机 这里要确保ansible主机能够解析所有被管理的机器&#xff0c;这里通过配置/etc/hosts来实现…...

【1.6计算机组成与体系结构】存储系统

目录 1.层次化存储结构2.Cache2.1 Cache的介绍2.2 局部性原理2.3 Cache应用 1.层次化存储结构 由 ⬆ CPU&#xff1a;寄存器。 快 ⬆ Cache&#xff1a;按内容存取(相联存储器)。 到 ⬆内存&#xff08;主存&#xff09;&#xff1a;DRAM。 慢 ⬆ 外存&#xff08;辅存&#…...

TCP/UDP 协议

目录 一.TCP协议 1.介绍 2.报文格式 ​编辑 确认号 控制位 窗口大小 3.TCP特性 二.TCP协议的三次握手 1.tcp 三次握手的过程 三.四次挥手 2.有限状态机 四.tcp协议和udp协议的区别 五.udp协议 UDP特性 六.telnet协议 一.TCP协议 1.介绍 TCP&#xff08;Transm…...

如何正确理解和使用 Golang 中 nil ?

目录 指针中的 nil 切片中的 nil map 中的 nil 通道中的 nil 函数中的 nil 接口中的 nil 避免 nil 相关问题的最佳实践 小结 在 Golang 中&#xff0c;nil 是一个预定义的标识符&#xff0c;在不同的上下文环境中有不同的含义&#xff0c;但通常表示“无”、“空”或“…...

IDEA新建jdk8 spring boot项目

今天新建spring boot项目发现JDK版本最低可选17。 但是目前用的最多的还是JDK8啊。 解决办法 Server URL中设置&#xff1a; https://start.aliyun.com/设置完成后&#xff0c;又可以愉快的用jdk8创建项目了。 参考 https://blog.csdn.net/imbzz/article/details/13469117…...

Qt/C++音视频开发59-使用mdk-sdk组件/原qtav作者力作/性能凶残/超级跨平台

一、前言 最近一个月一直在研究mdk-sdk音视频组件&#xff0c;这个组件是原qtav作者的最新力作&#xff0c;提供了各种各样的示例demo&#xff0c;不仅限于支持C&#xff0c;其他各种比如java/flutter/web/android等全部支持&#xff0c;性能上也是杠杠的&#xff0c;目前大概…...

智安网络|企业网络安全工具对比:云桌面与堡垒机,哪个更适合您的需求

随着云计算技术的快速发展&#xff0c;越来越多的企业开始采用云计算解决方案来提高效率和灵活性。在云计算环境下&#xff0c;云桌面和堡垒机被广泛应用于企业网络安全和办公环境中。尽管它们都有助于提升企业的安全和效率&#xff0c;但云桌面和堡垒机在功能和应用方面存在着…...

Git忽略已经提交的文件

原理类似于 Android修改submodule的lib包名...

MVVM和MVC以及MVP的原理以及它们的区别

MVVM、MVC 和 MVP 都是前端架构模式&#xff0c;它们各自有不同的原理和特点。 MVC&#xff08;Model-View-Controller&#xff09; 原理&#xff1a;MVC 将应用程序分为三个部分&#xff1a;模型&#xff08;Model&#xff09;、视图&#xff08;View&#xff09;和控制器&a…...

WeChatMsg: 导出微信聊天记录 | 开源日报 No.108

Mozilla-Ocho/llamafile Stars: 3.5k License: NOASSERTION llamafile 是一个开源项目&#xff0c;旨在通过将 lama.cpp 与 Cosmopolitan Libc 结合成一个框架&#xff0c;将 LLM (Large Language Models) 的复杂性折叠到单个文件可执行程序中&#xff0c;并使其能够在大多数…...

Python学习之复习MySQL-Day3(DQL)

目录 文章声明⭐⭐⭐让我们开始今天的学习吧&#xff01;DQL简介基本查询查询多个/全部字段设置别名去除重复记录 条件查询条件查询介绍实例演示 聚合函数什么是聚合函数&#xff1f;常见的聚合函数实例演示 分组查询分组查询语法where 和 having 的区别实例演示 排序查询语法实…...

AI超级个体:ChatGPT与AIGC实战指南

目录 前言 一、ChatGPT在日常工作中的应用场景 1. 客户服务与支持 2. 内部沟通与协作 3. 创新与问题解决 二、巧用ChatGPT提升工作效率 1. 自动化工作流程 2. 信息整合与共享 3. 提高决策效率 三、巧用ChatGPT创造价值 1. 优化产品和服务 2. 提高员工满意度和留任率…...

SpringBoot集成websocket(5)|(使用OkHttpClient实现websocket以及详细介绍)

SpringBoot集成websocket&#xff08;5&#xff09;|&#xff08;使用OkHttpClient实现websocket以及详细介绍&#xff09; 文章目录 SpringBoot集成websocket&#xff08;5&#xff09;|&#xff08;使用OkHttpClient实现websocket以及详细介绍&#xff09;[TOC] 前言一、初始…...

Kafka-Kafka基本原理与集群快速搭建(实践)

Kafka单机搭建 下载Kafka Apache Download Mirrors 解压 tar -zxvf kafka_2.12-3.4.0.tgz -C /usr/local/src/software/kafkakafka内部bin目录下有个内置的zookeeper(用于单机) 启动zookeeper&#xff08;在后台启动&#xff09; nohup bin/zookeeper-server-start.sh conf…...

Elasticsearch 进阶(索引、类型、字段、分片、副本、集群等详细说明)-06

笔记来源&#xff1a;Elasticsearch Elasticsearch进阶 进阶-核心概念 索引Index 一个索引就是一个拥有几分相似特征的文档的集合。比如说&#xff0c;你可以有一个客户数据的索引&#xff0c;另一个产品目录的索引&#xff0c;还有一个订单数据的索引。一个索引由一个名字…...

Ubuntu系统下交叉编译openssl

一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机&#xff1a;Ubuntu 20.04.6 LTSHost&#xff1a;ARM32位交叉编译器&#xff1a;arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...

智能在线客服平台:数字化时代企业连接用户的 AI 中枢

随着互联网技术的飞速发展&#xff0c;消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁&#xff0c;不仅优化了客户体验&#xff0c;还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用&#xff0c;并…...

Angular微前端架构:Module Federation + ngx-build-plus (Webpack)

以下是一个完整的 Angular 微前端示例&#xff0c;其中使用的是 Module Federation 和 npx-build-plus 实现了主应用&#xff08;Shell&#xff09;与子应用&#xff08;Remote&#xff09;的集成。 &#x1f6e0;️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...

浪潮交换机配置track检测实现高速公路收费网络主备切换NQA

浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求&#xff0c;本次涉及的主要是收费汇聚交换机的配置&#xff0c;浪潮网络设备在高速项目很少&#xff0c;通…...

《信号与系统》第 6 章 信号与系统的时域和频域特性

目录 6.0 引言 6.1 傅里叶变换的模和相位表示 6.2 线性时不变系统频率响应的模和相位表示 6.2.1 线性与非线性相位 6.2.2 群时延 6.2.3 对数模和相位图 6.3 理想频率选择性滤波器的时域特性 6.4 非理想滤波器的时域和频域特性讨论 6.5 一阶与二阶连续时间系统 6.5.1 …...

路由基础-路由表

本篇将会向读者介绍路由的基本概念。 前言 在一个典型的数据通信网络中&#xff0c;往往存在多个不同的IP网段&#xff0c;数据在不同的IP网段之间交互是需要借助三层设备的&#xff0c;这些设备具备路由能力&#xff0c;能够实现数据的跨网段转发。 路由是数据通信网络中最基…...

大数据驱动企业决策智能化的路径与实践

&#x1f4dd;个人主页&#x1f339;&#xff1a;慌ZHANG-CSDN博客 &#x1f339;&#x1f339;期待您的关注 &#x1f339;&#x1f339; 一、引言&#xff1a;数据驱动的企业竞争力重构 在这个瞬息万变的商业时代&#xff0c;“快者胜”的竞争逻辑愈发明显。企业如何在复杂环…...

FTXUI::Dom 模块

DOM 模块定义了分层的 FTXUI::Element 树&#xff0c;可用于构建复杂的终端界面&#xff0c;支持响应终端尺寸变化。 namespace ftxui {...// 定义文档 定义布局盒子 Element document vbox({// 设置文本 设置加粗 设置文本颜色text("The window") | bold | color(…...

RushDB开源程序 是现代应用程序和 AI 的即时数据库。建立在 Neo4j 之上

一、软件介绍 文末提供程序和源码下载 RushDB 改变了您处理图形数据的方式 — 不需要 Schema&#xff0c;不需要复杂的查询&#xff0c;只需推送数据即可。 二、Key Features ✨ 主要特点 Instant Setup: Be productive in seconds, not days 即时设置 &#xff1a;在几秒钟…...

关于 ffmpeg设置摄像头报错“Could not set video options” 的解决方法

若该文为原创文章&#xff0c;转载请注明原文出处 本文章博客地址&#xff1a;https://hpzwl.blog.csdn.net/article/details/148515355 长沙红胖子Qt&#xff08;长沙创微智科&#xff09;博文大全&#xff1a;开发技术集合&#xff08;包含Qt实用技术、树莓派、三维、OpenCV…...