当前位置: 首页 > news >正文

MILP加速运算技巧——模型对称性的预处理

文章目录

  • 整数规划的对称性
    • 什么是对称性
    • 对称性的影响
  • 对称性的预处理方法


整数规划的对称性

什么是对称性

许多整数规划问题存在对称性,这种对称性是指问题解空间的对称,即在对称的解空间当中解的优化目标值上是相同的。这种对称性并不会改变问题的最优值,如果我们能够限制这种对称性,就能在不改变问题最优值的情况下,缩减问题可行空间的规模,因此很多MIP求解器会对模型的对称性做出检测并进行处理。

以生产排程问题为例,加入存在一批加工工件,每个工件基于它的产品类型有一个加工工艺,若工件1和工件2的加工工艺相同,此时,对于最终的生产方案而言,加工工件1和加工工件2的每个步骤的顺序进行调换,并不会影响问题的目标值,此时工件1和工件2相关的所有决策变量具有对称性。

又例如: 2 x 1 + 2 x 2 + x 3 ≤ 10 , x 1 ≤ 5 , x 2 ≤ 5 2x1+2x2+x3\leq 10, x1\leq 5, x2\leq 5 2x1+2x2+x310,x15,x25,目标函数是 3 x 1 + 3 x 2 + x 3 3x1+3x2+x3 3x1+3x2+x3,此时不论最终的结果如何, x 1 , x 2 x1,x2 x1,x2之间的解进行调换,都不会影响目标值,原因是 x 1 , x 2 x1,x2 x1,x2 不论是约束系数,还是边界,以及目标函数系数都相同,他们的最优解互相对调,也是一个最优解,两个变量具有对称性。

例如以Gurobi预处理为例:

# 添加约束
model.addConstr(2*x1+ 2*x2 + y <= 10)
model.addConstr(x1 <= 5)
model.addConstr(x2 <= 5)
model.addConstr(y >= 5)
# 定义目标函数
model.setObjective(3*x1 +3*x2 + y, sense=grb.GRB.MINIMIZE)

在求解日志当中,上述问题的所有约束和变量都被预处理过程确定下来,当 y y y 确定后, x 1 + x 2 x1+x2 x1+x2 的值能确定,且由于 x 1 , x 2 x1,x2 x1,x2 两个变量对称,所以问题的最优解不唯一。

...
Presolve removed 4 rows and 3 columns
Presolve time: 0.00s
Presolve: All rows and columns removed
...

许多的整数规划问题当中都存在这样的特点,例如在车辆路径问题当中,有两个点到其他所有点的距离都一样,此时这两个点不论先通过哪个点都是一样的,但在求解问题当中,其中一个点在前的方案、以及另一个点在前的方案都包含在问题的可行域内,尽管两者是等价的。

对称性的影响

很显然,过于强烈的对称性有时候就会产生无效的搜索动作。特别是对于经典的精确搜索框架——分支定界,对称的变量会导致大量重复的待搜索节点(子问题),不论是界的收敛还是待剪支数量,对称性都会在这个过程中造成大量的无效动作。而这种具有对称性的等价变量越多,则问题当中等价的可行解就越多,相同节点也就越多,算法的搜索就会变慢。

对于一些问题而言,因为对称性导致原本不复杂的问题,往往难以直接通过求解器在可接受的时间内得到满意的解,因此对于这个混合整数变量的问题,需要采取一定的办法进行处理。

对称性的预处理方法

前面提到,这种等价变量的一个特点就是约束系数以及目标函数系数都一致,因此需要打破这种对称性,而这只需要改变系数的一致性即可,对于一些问题而言,这个动作能直接将求解问题的时间缩短几十上千倍。

一些求解器会建立具有任意目标函数系数的模型,而更一般性的方法是增加对称性割,即添加破坏这种对称性的约束条件:既然这些变量是等价变量,那就增加约束来使得这些变量的值不等价,有一个倾向性,减少算法搜索另一些等价的对称解空间,以此来提升算法效率,这对于大规模的且有大量等价变量的问题尤为重要。

对称性割的基本形式为:

d ⊤ x ≤ d ⊤ π ( x ) d^{\top}x \leq d^{\top}\pi (x) dxdπ(x)

其中, π \pi π是置换算子, d = ( 2 n − 1 , 2 x − 2 , . . . 2 0 ) d=(2^{n-1}, 2^{x-2},...2^0) d=(2n1,2x2,...20) n n n 是具有对称性的等价变量数量。例如当 n = 2 n=2 n=2,只有 x 1 , x 2 x1,x2 x1,x2 两个等价变量时,对称性割就为 x 1 + 2 x 2 ≤ x 2 + 2 x 1 x1+2x2\leq x2+2x1 x1+2x2x2+2x1,移项得 x 2 ≤ x 1 x2\leq x1 x2x1。这种约束就使得原本等价的两个解,只能有一个是满足该约束的,缩减了问题的解空间,加速了B&B算法的收敛。但值得注意的是,有大量等价变量不仅意味着对称性割的加速效果显著,也意味着添加的对称性割的数量庞大,减少了相同的节点,但增加了节点处问题的求解难度,在实际中仍需要进行一定的权衡。

相关文章:

MILP加速运算技巧——模型对称性的预处理

文章目录 整数规划的对称性什么是对称性对称性的影响 对称性的预处理方法 整数规划的对称性 什么是对称性 许多整数规划问题存在对称性&#xff0c;这种对称性是指问题解空间的对称&#xff0c;即在对称的解空间当中解的优化目标值上是相同的。这种对称性并不会改变问题的最优…...

JavaScript中的生成器与迭代器详解

一、迭代器与可迭代对象 1.什么是迭代器 迭代器&#xff08;iterator&#xff09;&#xff0c;使用户在容器对象&#xff08;container&#xff0c;例如链表或数组&#xff09;上遍访的对象&#xff0c;使用该接口无需关心对象的内部实现细节。 其行为像数据库中的光标&…...

WebLangChain_ChatGLM:结合 WebLangChain 和 ChatGLM3 的中文 RAG 系统

WebLangChain_ChatGLM 介绍 本文将详细介绍基于网络检索信息的检索增强生成系统&#xff0c;即 WebLangChain。通过整合 LangChain&#xff0c;成功将大型语言模型与最受欢迎的外部知识库之一——互联网紧密结合。鉴于中文社区中大型语言模型的蓬勃发展&#xff0c;有许多可供利…...

hive常用SQL函数及案例

1 函数简介 Hive会将常用的逻辑封装成函数给用户进行使用&#xff0c;类似于Java中的函数。 好处&#xff1a;避免用户反复写逻辑&#xff0c;可以直接拿来使用。 重点&#xff1a;用户需要知道函数叫什么&#xff0c;能做什么。 Hive提供了大量的内置函数&#xff0c;按照其特…...

分页操作中使用LIMIT和OFFSET后出现慢查询的原因分析

事情经过 最近在做批量数据处理的相关业务&#xff0c;在和下游对接时&#xff0c;发现拉取他们的业务数据刚开始很快&#xff0c;后面会越来越慢&#xff0c;40万数据一个小时都拉不完。经过排查后&#xff0c;发现对方用了很坑的分页查询方式 —— LIMIT OFFSET&#xff0c;…...

Java八股文面试全套真题【含答案】- Redis篇

请看下面列举的50个关于Redis的经典面试问题和简短答案&#xff1a; Redis是什么&#xff1f;简要介绍一下Redis的特点。 Redis是一个开源的高性能键值存储数据库&#xff0c;支持多种数据结构&#xff0c;如字符串、列表、集合、哈希和有序集合等。 特点包括快速、可持久化、支…...

【C++11特性篇】一文助小白轻松理解 C++中的【左值&左值引用】【右值&右值引用】

前言 大家好吖&#xff0c;欢迎来到 YY 滴C系列 &#xff0c;热烈欢迎&#xff01; 本章主要内容面向接触过C的老铁 主要内容含&#xff1a; 欢迎订阅 YY滴C专栏&#xff01;更多干货持续更新&#xff01;以下是传送门&#xff01; 目录 一.【左值&#xff06;左值引用】&…...

动态规划——OJ题(一)

&#x1f4d8;北尘_&#xff1a;个人主页 &#x1f30e;个人专栏:《Linux操作系统》《经典算法试题 》《C》 《数据结构与算法》 ☀️走在路上&#xff0c;不忘来时的初心 文章目录 一、第N个泰波那契数1、题目讲解2、思路讲解3、代码实现 二、三步问题1、题目讲解2、思路讲解…...

六:爬虫-数据解析之BeautifulSoup4

六&#xff1a;bs4简介 基本概念&#xff1a; 简单来说&#xff0c;Beautiful Soup是python的一个库&#xff0c;最主要的功能是从网页抓取数据官方解释如下&#xff1a; Beautiful Soup提供一些简单的、python式的函数用来处理导航、搜索、修改分析树等功能。 它是一个工具箱…...

音频筑基:总谐波失真THD+N指标

音频筑基&#xff1a;总谐波失真THDN指标 THDN含义深入理解 在分析音频信号中&#xff0c;THDN指标是我们经常遇到的概念&#xff0c;这里谈谈自己的理解。 THDN含义 首先&#xff0c;理解THD的定义&#xff1a; THD&#xff0c;Total Harmonic Distortion&#xff0c;总谐波…...

自动驾驶技术:驶向未来的智能之路

导言 自动驾驶技术正引领着汽车产业向着更安全、高效、智能的未来演进。本文将深入研究自动驾驶技术的核心原理、关键技术、应用场景以及对交通、社会的深远影响。 1. 简介 自动驾驶技术是基于先进传感器、计算机视觉、机器学习等技术的创新&#xff0c;旨在实现汽车在不需要人…...

TIGRE: a MATLAB-GPU toolbox for CBCT image reconstruction

TIGRE: 用于CBCT图像重建的MATLAB-GPU工具箱 论文链接&#xff1a;https://iopscience.iop.org/article/10.1088/2057-1976/2/5/055010 项目链接&#xff1a;https://github.com/CERN/TIGRE Abstract 本文介绍了基于层析迭代GPU的重建(TIGRE)工具箱&#xff0c;这是一个用于…...

我的NPI项目之Android 安全系列 -- EMVCo

最近一直在和支付有关的内容纠缠&#xff0c;原来我负责的产品后面还要过EMVCo的认证。于是&#xff0c;就网上到处找找啥事EMVCo&#xff0c;啥是EMVCo&#xff0c;啥是EMVCo。 于是找到了一个神奇的个人网站&#xff1a;Ganeshji Marwaha 虽然时间有点久远&#xff0c;但是用…...

vue中实现使用相框点击拍照,canvas进行前端图片合并下载

拍照和相框合成,下载图片dome 一、canvas介绍 Canvas是一个HTML5元素,它提供了一个用于在网页上绘制图形、图像和动画的2D渲染上下文。Canvas可以用于创建各种图形,如线条、矩形、圆形、文本等,并且可以通过JavaScript进行编程操作。 Canvas元素本身是一个矩形框,可以通…...

边缘检测@获取labelme标注的json黑白图掩码mask

import cv2 as cv import numpy as np import json import os from PIL import Imagedef convertPolygonToMask(jsonfilePath):...

嵌入式培训-数据结构-day23-线性表

线性表 线性表是包含若干数据元素的一个线性序列 记为&#xff1a; L(a0, ...... ai-1, ai, ai1 ...... an-1) L为表名&#xff0c;ai (0≤i≤n-1)为数据元素&#xff1b; n为表长,n>0 时&#xff0c;线性表L为非空表&#xff0c;否则为空表。 线性表L可用二元组形式描述…...

C# DotNetCore AOP简单实现

背景 实际开发中业务和日志尽量不要相互干扰嵌套&#xff0c;否则很难维护和调试。 示例 using System.Reflection;namespace CSharpLearn {internal class Program{static void Main(){int age 25;string name "bingling";Person person new(age, name);Conso…...

19.Tomcat搭建

Tomcat 简介 Tomcat的安装和启动 前置条件 • JDK 已安装(JAVA_HOME环境变量已被成功配置) Windows 下安装 访问 http://tomcat.apache.org ⇒ 左侧边栏 “Download” 2. 解压缩下载的文件到 “D:\tomcat”, tomcat的内容最终被解压到 “D:\tomcat\apache-tomcat-9.0.84” 3.…...

HarmonyOS云开发基础认证考试满分答案(100分)【全网最全-不断更新】【鸿蒙专栏-29】

系列文章&#xff1a; HarmonyOS应用开发者基础认证满分答案&#xff08;100分&#xff09; HarmonyOS应用开发者基础认证【闯关习题 满分答案】 HarmonyOS应用开发者高级认证满分答案&#xff08;100分&#xff09; HarmonyOS云开发基础认证满分答案&#xff08;100分&#xf…...

Unity项目里Log系统该怎么设计

其实并没有想完整就设计一个好用的Log系统&#xff0c;然后发出来。记录这个的原因&#xff0c;是在书里看到这么一句话&#xff0c;Log会消耗资源&#xff0c;特别是写文件&#xff0c;因此可以设置一个Log缓冲区&#xff0c;等缓冲区满了再一次性写入文件&#xff0c;以节省资…...

浏览器访问 AWS ECS 上部署的 Docker 容器(监听 80 端口)

✅ 一、ECS 服务配置 Dockerfile 确保监听 80 端口 EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]或 EXPOSE 80 CMD ["python3", "-m", "http.server", "80"]任务定义&#xff08;Task Definition&…...

进程地址空间(比特课总结)

一、进程地址空间 1. 环境变量 1 &#xff09;⽤户级环境变量与系统级环境变量 全局属性&#xff1a;环境变量具有全局属性&#xff0c;会被⼦进程继承。例如当bash启动⼦进程时&#xff0c;环 境变量会⾃动传递给⼦进程。 本地变量限制&#xff1a;本地变量只在当前进程(ba…...

React第五十七节 Router中RouterProvider使用详解及注意事项

前言 在 React Router v6.4 中&#xff0c;RouterProvider 是一个核心组件&#xff0c;用于提供基于数据路由&#xff08;data routers&#xff09;的新型路由方案。 它替代了传统的 <BrowserRouter>&#xff0c;支持更强大的数据加载和操作功能&#xff08;如 loader 和…...

uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖

在前面的练习中&#xff0c;每个页面需要使用ref&#xff0c;onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入&#xff0c;需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...

【位运算】消失的两个数字(hard)

消失的两个数字&#xff08;hard&#xff09; 题⽬描述&#xff1a;解法&#xff08;位运算&#xff09;&#xff1a;Java 算法代码&#xff1a;更简便代码 题⽬链接&#xff1a;⾯试题 17.19. 消失的两个数字 题⽬描述&#xff1a; 给定⼀个数组&#xff0c;包含从 1 到 N 所有…...

React Native在HarmonyOS 5.0阅读类应用开发中的实践

一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强&#xff0c;React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 &#xff08;1&#xff09;使用React Native…...

【算法训练营Day07】字符串part1

文章目录 反转字符串反转字符串II替换数字 反转字符串 题目链接&#xff1a;344. 反转字符串 双指针法&#xff0c;两个指针的元素直接调转即可 class Solution {public void reverseString(char[] s) {int head 0;int end s.length - 1;while(head < end) {char temp …...

数据链路层的主要功能是什么

数据链路层&#xff08;OSI模型第2层&#xff09;的核心功能是在相邻网络节点&#xff08;如交换机、主机&#xff09;间提供可靠的数据帧传输服务&#xff0c;主要职责包括&#xff1a; &#x1f511; 核心功能详解&#xff1a; 帧封装与解封装 封装&#xff1a; 将网络层下发…...

Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理

引言 Bitmap&#xff08;位图&#xff09;是Android应用内存占用的“头号杀手”。一张1080P&#xff08;1920x1080&#xff09;的图片以ARGB_8888格式加载时&#xff0c;内存占用高达8MB&#xff08;192010804字节&#xff09;。据统计&#xff0c;超过60%的应用OOM崩溃与Bitm…...

rnn判断string中第一次出现a的下标

# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...