将yolo格式转化为voc格式:txt转xml(亲测有效)
1.文件目录如下所示:

对以上目录的解释:
1.dataset下面的image文件夹:里面装的是数据集的原图片

2.dataset下面的label文件夹:里面装的是图片对应得yolo格式标签

3.dataset下面的Annotations文件夹:这是一个空文件夹,里面要装得是即将要生成得voc格式标签
2.转换代码如下所示
新建一个convert.py文件,然后将下面代码复制进去
注意:文件夹的格式要与我的一样才行
from xml.dom.minidom import Document
import os
import cv2# def makexml(txtPath, xmlPath, picPath): # txt所在文件夹路径,xml文件保存路径,图片所在文件夹路径
def makexml(picPath, txtPath, xmlPath): # txt所在文件夹路径,xml文件保存路径,图片所在文件夹路径"""此函数用于将yolo格式txt标注文件转换为voc格式xml标注文件"""dic = {'0': "pedestrian", # 创建字典用来对类型进行转换'1': "people", # 此处的字典要与自己的classes.txt文件中的类对应,且顺序要一致'2': "bicycle",'3': "car",'4': "van",'5': "truck",'6': "tricycle",'7': "awning-tricycle",'8': "bus",'9': "motor",}files = os.listdir(txtPath)for i, name in enumerate(files):xmlBuilder = Document()annotation = xmlBuilder.createElement("annotation") # 创建annotation标签xmlBuilder.appendChild(annotation)txtFile = open(txtPath + name)txtList = txtFile.readlines()img = cv2.imread(picPath + name[0:-4] + ".jpg")Pheight, Pwidth, Pdepth = img.shapefolder = xmlBuilder.createElement("folder") # folder标签foldercontent = xmlBuilder.createTextNode("driving_annotation_dataset")folder.appendChild(foldercontent)annotation.appendChild(folder) # folder标签结束filename = xmlBuilder.createElement("filename") # filename标签filenamecontent = xmlBuilder.createTextNode(name[0:-4] + ".jpg")filename.appendChild(filenamecontent)annotation.appendChild(filename) # filename标签结束size = xmlBuilder.createElement("size") # size标签width = xmlBuilder.createElement("width") # size子标签widthwidthcontent = xmlBuilder.createTextNode(str(Pwidth))width.appendChild(widthcontent)size.appendChild(width) # size子标签width结束height = xmlBuilder.createElement("height") # size子标签heightheightcontent = xmlBuilder.createTextNode(str(Pheight))height.appendChild(heightcontent)size.appendChild(height) # size子标签height结束depth = xmlBuilder.createElement("depth") # size子标签depthdepthcontent = xmlBuilder.createTextNode(str(Pdepth))depth.appendChild(depthcontent)size.appendChild(depth) # size子标签depth结束annotation.appendChild(size) # size标签结束for j in txtList:oneline = j.strip().split(" ")object = xmlBuilder.createElement("object") # object 标签picname = xmlBuilder.createElement("name") # name标签namecontent = xmlBuilder.createTextNode(dic[oneline[0]])picname.appendChild(namecontent)object.appendChild(picname) # name标签结束pose = xmlBuilder.createElement("pose") # pose标签posecontent = xmlBuilder.createTextNode("Unspecified")pose.appendChild(posecontent)object.appendChild(pose) # pose标签结束truncated = xmlBuilder.createElement("truncated") # truncated标签truncatedContent = xmlBuilder.createTextNode("0")truncated.appendChild(truncatedContent)object.appendChild(truncated) # truncated标签结束difficult = xmlBuilder.createElement("difficult") # difficult标签difficultcontent = xmlBuilder.createTextNode("0")difficult.appendChild(difficultcontent)object.appendChild(difficult) # difficult标签结束bndbox = xmlBuilder.createElement("bndbox") # bndbox标签xmin = xmlBuilder.createElement("xmin") # xmin标签mathData = int(((float(oneline[1])) * Pwidth + 1) - (float(oneline[3])) * 0.5 * Pwidth)xminContent = xmlBuilder.createTextNode(str(mathData))xmin.appendChild(xminContent)bndbox.appendChild(xmin) # xmin标签结束ymin = xmlBuilder.createElement("ymin") # ymin标签mathData = int(((float(oneline[2])) * Pheight + 1) - (float(oneline[4])) * 0.5 * Pheight)yminContent = xmlBuilder.createTextNode(str(mathData))ymin.appendChild(yminContent)bndbox.appendChild(ymin) # ymin标签结束xmax = xmlBuilder.createElement("xmax") # xmax标签mathData = int(((float(oneline[1])) * Pwidth + 1) + (float(oneline[3])) * 0.5 * Pwidth)xmaxContent = xmlBuilder.createTextNode(str(mathData))xmax.appendChild(xmaxContent)bndbox.appendChild(xmax) # xmax标签结束ymax = xmlBuilder.createElement("ymax") # ymax标签mathData = int(((float(oneline[2])) * Pheight + 1) + (float(oneline[4])) * 0.5 * Pheight)ymaxContent = xmlBuilder.createTextNode(str(mathData))ymax.appendChild(ymaxContent)bndbox.appendChild(ymax) # ymax标签结束object.appendChild(bndbox) # bndbox标签结束annotation.appendChild(object) # object标签结束f = open(xmlPath + name[0:-4] + ".xml", 'w')xmlBuilder.writexml(f, indent='\t', newl='\n', addindent='\t', encoding='utf-8')f.close()if __name__ == "__main__":picPath = "dataset/image/" # 图片所在文件夹路径,后面的/一定要带上txtPath = "dataset/label/" # txt所在文件夹路径,后面的/一定要带上xmlPath = "dataset/Annotations/" # xml文件保存路径,后面的/一定要带上makexml(picPath, txtPath, xmlPath)
3.需要修改的地方-标签字典
如果你要转换得标签内容与上面标签字典得内容不同得话,请按需求修改成你自己的标签

4.需要修改的地方-文件夹路径
如果你的文件夹路径跟我上面的不一样的话,那么在这里修改成你对应的文件夹路径

5.运行你刚刚创建的convert.py文件,就生成xml格式的标签了

6.使用labelimg验证一下转换之后的格式
先打开图片和标签所在的文件夹

在这里输入cmd


打开命令行窗口

先激活虚拟环境,输入命令:
activate yolo

然后使用labelimg验证
labelimg image
在选择标签文件夹的时候选择刚才生成的voc格式标签的文件夹

然后进入页面就是这个样子

说明转换格式成功啦!!!
相关文章:
将yolo格式转化为voc格式:txt转xml(亲测有效)
1.文件目录如下所示: 对以上目录的解释: 1.dataset下面的image文件夹:里面装的是数据集的原图片 2.dataset下面的label文件夹:里面装的是图片对应得yolo格式标签 3.dataset下面的Annotations文件夹:这是一个空文件夹&…...
字符串 - 541.反转字符串II(C#和C实现)
字符串 - 541.反转字符串II(C#和C实现) 题目描述 给定一个字符串 s 和一个整数 k,你需要对从字符串开头算起的每隔 2k 个字符的前 k 个字符进行反转。 如果剩余字符少于 k 个,则将剩余字符全部反转。如果剩余字符小于 2k 但大于或等于 k 个࿰…...
机器视觉技术与应用实战(开运算、闭运算、细化)
开运算和闭运算的基础是膨胀和腐蚀,可以在看本文章前先阅读这篇文章机器视觉技术与应用实战(Chapter Two-04)-CSDN博客 开运算:先腐蚀后膨胀。开运算可以使图像的轮廓变得光滑,具有断开狭窄的间断和消除细小突出物的作…...
云原生之深入解析云原生架构的日志监控
一、什么是云原生架构的日志监控? 云原生架构的日志监控要求现代 Web 应用程序采用与传统应用程序略有不同的方法。部分原因是应用程序环境要复杂得多,包括从微服务中获取数据、使用 Kubernetes 和其他容器技术,以及在许多情况下集成开源组件…...
基于hfl/rbt3模型的情感分析学习研究——文本挖掘
参考书籍《HuggingFace自然语言处理详解 》 什么是文本挖掘 文本挖掘(Text mining)有时也被称为文字探勘、文本数据挖掘等,大致相当于文字分析,一般指文本处理过程中产生高质量的信息。高质量的信息通常通过分类和预测来产生&…...
计算机网络基础——常用的中英文网络述语大全,强烈建议收藏
系统网络体系结构(System Network Architecture,SNA) 国际标准化组织(International Organization for Standardization,ISO) 开放系统互连基本参考模型(Open System Interconnection Reference Model。OSI/RM) 物理层(Physical Layer) 数据终端设备…...
c++如何自定义类及成员函数
#include <iostream>using namespace std;class Box {public:double length; // 长度double breadth; // 宽度double height; // 高度// 成员函数声明double get(void);void set( double len, double bre, double hei ); }; // 成员函数定义 double Box::get(void) …...
100G云数据中心网络建设解决方案
随着数据和流量的快速增长,近年来数据中心已经进入了一个全新的100G时代。为了更高效地提供包括人工智能、虚拟现实、4K视频等在内的云计算服务,全球范围内正在大规模建设众多大型100G数据中心,如云数据中心。作为一种新型高效的基础设施&…...
Zoho Desk为何受到跨境电商企业青睐:优势与特点解析
现如今,跨境电商已成为中国外贸发展的一支重要力量,正从一种新业态成长为外贸的新常态。越来越多的国内电商玩家加入了跨境电商这个战场。跨境电商自有其特殊性,海外客户服务不好一样惨遭投诉,Zoho Desk可以帮助您赢得客户满意度&…...
git 删除仓库中多余的文件或者文件夹
目录 问题 解决方案 第一步:同步代码 第二步:删除文件 第三步:提交 第四步:推送远端 问题 在项目开发测试阶段,将无意间将本地敏感的、或无用的文件或目录不小心提交到远程仓库,该怎么解决呢。 解决方…...
搭建git服务器(本地局域网)
搭建git服务器(本地局域网) 创建仓库 (假定在/home/git目录下创建仓库) git init --bare sample.git克隆远程仓库到本地 git clone git192.168.0.100:/home/git/sample.git已有项目,绑定远程仓库 # 查看远程仓库绑定 git remote -v# 解除…...
如何让营销更生动,更有效!
作为专业的营销人员,我们深知在当今竞争激烈的市场环境中,如何让自己的产品或服务脱颖而出,吸引更多的潜在客户,是企业成功的关键。而中昱维信视频短信平台,正是您实现这一目标的得力助手。 一、视频短信,…...
RestTemplate请求参数需要转义 处理
项目需求 iam的token鉴权 需要带转义的回调http路径 用以下处理参数 接口仍然返回异常: public String authBack(String backUrl){ // backUrl http://192.168.1.156:sdm/String state URLEncoder.encode(state, "UTF-8"); }查了一下,Rest…...
使用Kaptcha实现的验证码功能
目录 一.需求 二.验证码功能实现步骤 验证码 引入kaptcha依赖 完成application.yml配置文件 浏览器显示验证码 前端页面 登录页面 验证成功页面 后端 此验证码功能是以SpringBoot框架下基于kaptcha插件来实现的。 一.需求 1.页面生成验证码 2.输入验证码ÿ…...
【无标题】CTF之SQLMAP
拿这一题来说 抓个包 复制报文 启动我们的sqlmap kali里边 sqlmap -r 文件路径 --dump --dbs 数据库 --tables 表...
【Qt之Quick模块】1. 概述及Quick应用程序创建流程
概述 Qt的Quick模块是用于创建现代化、动态和响应式用户界面的工具集。它是基于QML(Qt Meta-Object Language)和JavaScript的。 QML是一种声明性的语言,用于描述用户界面的结构和行为。它使用层叠样式表(CSS)的语法来…...
C语言-数组指针笔试题讲解(1)-干货满满!!!
文章目录 ▶️1.sizeof和strlen的对比💯➡️1.1 sizeof是什么?💯➡️1.2sizeof用法举例💯▶️1.3strlen是什么?💯▶️1.4 strlen函数用法举例:💯▶️1.5 strlen和sizeof的对比&#…...
springboot整合vue,将vue项目整合到springboot项目中
将vue项目打包后,与springboot项目整合。 第一步,使用springboot中的thymeleaf模板引擎 导入依赖 <!-- thymeleaf 模板 --><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-t…...
C++ 二叉搜索树(BST)的实现(非递归版本与递归版本)与应用
C 二叉搜索树的实现与应用 一.二叉搜索树的特点二.我们要实现的大致框架三.Insert四.InOrder和Find1.InOrder2.Find 五.Erase六.Find,Insert,Erase的递归版本1.FindR2.InsertR3.EraseR 七.析构,拷贝构造,赋值运算符重载1.析构2.拷贝构造3.赋值运算重载 八.Key模型完整代码九.二…...
分类预测 | Matlab实现AOA-SVM算术优化支持向量机的数据分类预测【23年新算法】
分类预测 | Matlab实现AOA-SVM算术优化支持向量机的数据分类预测【23年新算法】 目录 分类预测 | Matlab实现AOA-SVM算术优化支持向量机的数据分类预测【23年新算法】分类效果基本描述程序设计参考资料 分类效果 基本描述 1.Matlab实现AOA-SVM算术优化支持向量机的数据分类预测…...
Day131 | 灵神 | 回溯算法 | 子集型 子集
Day131 | 灵神 | 回溯算法 | 子集型 子集 78.子集 78. 子集 - 力扣(LeetCode) 思路: 笔者写过很多次这道题了,不想写题解了,大家看灵神讲解吧 回溯算法套路①子集型回溯【基础算法精讲 14】_哔哩哔哩_bilibili 完…...
【机器视觉】单目测距——运动结构恢复
ps:图是随便找的,为了凑个封面 前言 在前面对光流法进行进一步改进,希望将2D光流推广至3D场景流时,发现2D转3D过程中存在尺度歧义问题,需要补全摄像头拍摄图像中缺失的深度信息,否则解空间不收敛…...
华为OD机试-食堂供餐-二分法
import java.util.Arrays; import java.util.Scanner;public class DemoTest3 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseint a in.nextIn…...
苍穹外卖--缓存菜品
1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得,如果用户端访问量比较大,数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据,减少数据库查询操作。 缓存逻辑分析: ①每个分类下的菜品保持一份缓存数据…...
大学生职业发展与就业创业指导教学评价
这里是引用 作为软工2203/2204班的学生,我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要,而您认真负责的教学态度,让课程的每一部分都充满了实用价值。 尤其让我…...
Mysql中select查询语句的执行过程
目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析(Parser) 2.4、执行sql 1. 预处理(Preprocessor) 2. 查询优化器(Optimizer) 3. 执行器…...
[ACTF2020 新生赛]Include 1(php://filter伪协议)
题目 做法 启动靶机,点进去 点进去 查看URL,有 ?fileflag.php说明存在文件包含,原理是php://filter 协议 当它与包含函数结合时,php://filter流会被当作php文件执行。 用php://filter加编码,能让PHP把文件内容…...
PHP 8.5 即将发布:管道操作符、强力调试
前不久,PHP宣布了即将在 2025 年 11 月 20 日 正式发布的 PHP 8.5!作为 PHP 语言的又一次重要迭代,PHP 8.5 承诺带来一系列旨在提升代码可读性、健壮性以及开发者效率的改进。而更令人兴奋的是,借助强大的本地开发环境 ServBay&am…...
十九、【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建
【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建 前言准备工作第一部分:回顾 Django 内置的 `User` 模型第二部分:设计并创建 `Role` 和 `UserProfile` 模型第三部分:创建 Serializers第四部分:创建 ViewSets第五部分:注册 API 路由第六部分:后端初步测…...
Unity中的transform.up
2025年6月8日,周日下午 在Unity中,transform.up是Transform组件的一个属性,表示游戏对象在世界空间中的“上”方向(Y轴正方向),且会随对象旋转动态变化。以下是关键点解析: 基本定义 transfor…...
