将yolo格式转化为voc格式:txt转xml(亲测有效)
1.文件目录如下所示:

对以上目录的解释:
1.dataset下面的image文件夹:里面装的是数据集的原图片

2.dataset下面的label文件夹:里面装的是图片对应得yolo格式标签

3.dataset下面的Annotations文件夹:这是一个空文件夹,里面要装得是即将要生成得voc格式标签
2.转换代码如下所示
新建一个convert.py文件,然后将下面代码复制进去
注意:文件夹的格式要与我的一样才行
from xml.dom.minidom import Document
import os
import cv2# def makexml(txtPath, xmlPath, picPath): # txt所在文件夹路径,xml文件保存路径,图片所在文件夹路径
def makexml(picPath, txtPath, xmlPath): # txt所在文件夹路径,xml文件保存路径,图片所在文件夹路径"""此函数用于将yolo格式txt标注文件转换为voc格式xml标注文件"""dic = {'0': "pedestrian", # 创建字典用来对类型进行转换'1': "people", # 此处的字典要与自己的classes.txt文件中的类对应,且顺序要一致'2': "bicycle",'3': "car",'4': "van",'5': "truck",'6': "tricycle",'7': "awning-tricycle",'8': "bus",'9': "motor",}files = os.listdir(txtPath)for i, name in enumerate(files):xmlBuilder = Document()annotation = xmlBuilder.createElement("annotation") # 创建annotation标签xmlBuilder.appendChild(annotation)txtFile = open(txtPath + name)txtList = txtFile.readlines()img = cv2.imread(picPath + name[0:-4] + ".jpg")Pheight, Pwidth, Pdepth = img.shapefolder = xmlBuilder.createElement("folder") # folder标签foldercontent = xmlBuilder.createTextNode("driving_annotation_dataset")folder.appendChild(foldercontent)annotation.appendChild(folder) # folder标签结束filename = xmlBuilder.createElement("filename") # filename标签filenamecontent = xmlBuilder.createTextNode(name[0:-4] + ".jpg")filename.appendChild(filenamecontent)annotation.appendChild(filename) # filename标签结束size = xmlBuilder.createElement("size") # size标签width = xmlBuilder.createElement("width") # size子标签widthwidthcontent = xmlBuilder.createTextNode(str(Pwidth))width.appendChild(widthcontent)size.appendChild(width) # size子标签width结束height = xmlBuilder.createElement("height") # size子标签heightheightcontent = xmlBuilder.createTextNode(str(Pheight))height.appendChild(heightcontent)size.appendChild(height) # size子标签height结束depth = xmlBuilder.createElement("depth") # size子标签depthdepthcontent = xmlBuilder.createTextNode(str(Pdepth))depth.appendChild(depthcontent)size.appendChild(depth) # size子标签depth结束annotation.appendChild(size) # size标签结束for j in txtList:oneline = j.strip().split(" ")object = xmlBuilder.createElement("object") # object 标签picname = xmlBuilder.createElement("name") # name标签namecontent = xmlBuilder.createTextNode(dic[oneline[0]])picname.appendChild(namecontent)object.appendChild(picname) # name标签结束pose = xmlBuilder.createElement("pose") # pose标签posecontent = xmlBuilder.createTextNode("Unspecified")pose.appendChild(posecontent)object.appendChild(pose) # pose标签结束truncated = xmlBuilder.createElement("truncated") # truncated标签truncatedContent = xmlBuilder.createTextNode("0")truncated.appendChild(truncatedContent)object.appendChild(truncated) # truncated标签结束difficult = xmlBuilder.createElement("difficult") # difficult标签difficultcontent = xmlBuilder.createTextNode("0")difficult.appendChild(difficultcontent)object.appendChild(difficult) # difficult标签结束bndbox = xmlBuilder.createElement("bndbox") # bndbox标签xmin = xmlBuilder.createElement("xmin") # xmin标签mathData = int(((float(oneline[1])) * Pwidth + 1) - (float(oneline[3])) * 0.5 * Pwidth)xminContent = xmlBuilder.createTextNode(str(mathData))xmin.appendChild(xminContent)bndbox.appendChild(xmin) # xmin标签结束ymin = xmlBuilder.createElement("ymin") # ymin标签mathData = int(((float(oneline[2])) * Pheight + 1) - (float(oneline[4])) * 0.5 * Pheight)yminContent = xmlBuilder.createTextNode(str(mathData))ymin.appendChild(yminContent)bndbox.appendChild(ymin) # ymin标签结束xmax = xmlBuilder.createElement("xmax") # xmax标签mathData = int(((float(oneline[1])) * Pwidth + 1) + (float(oneline[3])) * 0.5 * Pwidth)xmaxContent = xmlBuilder.createTextNode(str(mathData))xmax.appendChild(xmaxContent)bndbox.appendChild(xmax) # xmax标签结束ymax = xmlBuilder.createElement("ymax") # ymax标签mathData = int(((float(oneline[2])) * Pheight + 1) + (float(oneline[4])) * 0.5 * Pheight)ymaxContent = xmlBuilder.createTextNode(str(mathData))ymax.appendChild(ymaxContent)bndbox.appendChild(ymax) # ymax标签结束object.appendChild(bndbox) # bndbox标签结束annotation.appendChild(object) # object标签结束f = open(xmlPath + name[0:-4] + ".xml", 'w')xmlBuilder.writexml(f, indent='\t', newl='\n', addindent='\t', encoding='utf-8')f.close()if __name__ == "__main__":picPath = "dataset/image/" # 图片所在文件夹路径,后面的/一定要带上txtPath = "dataset/label/" # txt所在文件夹路径,后面的/一定要带上xmlPath = "dataset/Annotations/" # xml文件保存路径,后面的/一定要带上makexml(picPath, txtPath, xmlPath)
3.需要修改的地方-标签字典
如果你要转换得标签内容与上面标签字典得内容不同得话,请按需求修改成你自己的标签

4.需要修改的地方-文件夹路径
如果你的文件夹路径跟我上面的不一样的话,那么在这里修改成你对应的文件夹路径

5.运行你刚刚创建的convert.py文件,就生成xml格式的标签了

6.使用labelimg验证一下转换之后的格式
先打开图片和标签所在的文件夹

在这里输入cmd


打开命令行窗口

先激活虚拟环境,输入命令:
activate yolo

然后使用labelimg验证
labelimg image
在选择标签文件夹的时候选择刚才生成的voc格式标签的文件夹

然后进入页面就是这个样子

说明转换格式成功啦!!!
相关文章:
将yolo格式转化为voc格式:txt转xml(亲测有效)
1.文件目录如下所示: 对以上目录的解释: 1.dataset下面的image文件夹:里面装的是数据集的原图片 2.dataset下面的label文件夹:里面装的是图片对应得yolo格式标签 3.dataset下面的Annotations文件夹:这是一个空文件夹&…...
字符串 - 541.反转字符串II(C#和C实现)
字符串 - 541.反转字符串II(C#和C实现) 题目描述 给定一个字符串 s 和一个整数 k,你需要对从字符串开头算起的每隔 2k 个字符的前 k 个字符进行反转。 如果剩余字符少于 k 个,则将剩余字符全部反转。如果剩余字符小于 2k 但大于或等于 k 个࿰…...
机器视觉技术与应用实战(开运算、闭运算、细化)
开运算和闭运算的基础是膨胀和腐蚀,可以在看本文章前先阅读这篇文章机器视觉技术与应用实战(Chapter Two-04)-CSDN博客 开运算:先腐蚀后膨胀。开运算可以使图像的轮廓变得光滑,具有断开狭窄的间断和消除细小突出物的作…...
云原生之深入解析云原生架构的日志监控
一、什么是云原生架构的日志监控? 云原生架构的日志监控要求现代 Web 应用程序采用与传统应用程序略有不同的方法。部分原因是应用程序环境要复杂得多,包括从微服务中获取数据、使用 Kubernetes 和其他容器技术,以及在许多情况下集成开源组件…...
基于hfl/rbt3模型的情感分析学习研究——文本挖掘
参考书籍《HuggingFace自然语言处理详解 》 什么是文本挖掘 文本挖掘(Text mining)有时也被称为文字探勘、文本数据挖掘等,大致相当于文字分析,一般指文本处理过程中产生高质量的信息。高质量的信息通常通过分类和预测来产生&…...
计算机网络基础——常用的中英文网络述语大全,强烈建议收藏
系统网络体系结构(System Network Architecture,SNA) 国际标准化组织(International Organization for Standardization,ISO) 开放系统互连基本参考模型(Open System Interconnection Reference Model。OSI/RM) 物理层(Physical Layer) 数据终端设备…...
c++如何自定义类及成员函数
#include <iostream>using namespace std;class Box {public:double length; // 长度double breadth; // 宽度double height; // 高度// 成员函数声明double get(void);void set( double len, double bre, double hei ); }; // 成员函数定义 double Box::get(void) …...
100G云数据中心网络建设解决方案
随着数据和流量的快速增长,近年来数据中心已经进入了一个全新的100G时代。为了更高效地提供包括人工智能、虚拟现实、4K视频等在内的云计算服务,全球范围内正在大规模建设众多大型100G数据中心,如云数据中心。作为一种新型高效的基础设施&…...
Zoho Desk为何受到跨境电商企业青睐:优势与特点解析
现如今,跨境电商已成为中国外贸发展的一支重要力量,正从一种新业态成长为外贸的新常态。越来越多的国内电商玩家加入了跨境电商这个战场。跨境电商自有其特殊性,海外客户服务不好一样惨遭投诉,Zoho Desk可以帮助您赢得客户满意度&…...
git 删除仓库中多余的文件或者文件夹
目录 问题 解决方案 第一步:同步代码 第二步:删除文件 第三步:提交 第四步:推送远端 问题 在项目开发测试阶段,将无意间将本地敏感的、或无用的文件或目录不小心提交到远程仓库,该怎么解决呢。 解决方…...
搭建git服务器(本地局域网)
搭建git服务器(本地局域网) 创建仓库 (假定在/home/git目录下创建仓库) git init --bare sample.git克隆远程仓库到本地 git clone git192.168.0.100:/home/git/sample.git已有项目,绑定远程仓库 # 查看远程仓库绑定 git remote -v# 解除…...
如何让营销更生动,更有效!
作为专业的营销人员,我们深知在当今竞争激烈的市场环境中,如何让自己的产品或服务脱颖而出,吸引更多的潜在客户,是企业成功的关键。而中昱维信视频短信平台,正是您实现这一目标的得力助手。 一、视频短信,…...
RestTemplate请求参数需要转义 处理
项目需求 iam的token鉴权 需要带转义的回调http路径 用以下处理参数 接口仍然返回异常: public String authBack(String backUrl){ // backUrl http://192.168.1.156:sdm/String state URLEncoder.encode(state, "UTF-8"); }查了一下,Rest…...
使用Kaptcha实现的验证码功能
目录 一.需求 二.验证码功能实现步骤 验证码 引入kaptcha依赖 完成application.yml配置文件 浏览器显示验证码 前端页面 登录页面 验证成功页面 后端 此验证码功能是以SpringBoot框架下基于kaptcha插件来实现的。 一.需求 1.页面生成验证码 2.输入验证码ÿ…...
【无标题】CTF之SQLMAP
拿这一题来说 抓个包 复制报文 启动我们的sqlmap kali里边 sqlmap -r 文件路径 --dump --dbs 数据库 --tables 表...
【Qt之Quick模块】1. 概述及Quick应用程序创建流程
概述 Qt的Quick模块是用于创建现代化、动态和响应式用户界面的工具集。它是基于QML(Qt Meta-Object Language)和JavaScript的。 QML是一种声明性的语言,用于描述用户界面的结构和行为。它使用层叠样式表(CSS)的语法来…...
C语言-数组指针笔试题讲解(1)-干货满满!!!
文章目录 ▶️1.sizeof和strlen的对比💯➡️1.1 sizeof是什么?💯➡️1.2sizeof用法举例💯▶️1.3strlen是什么?💯▶️1.4 strlen函数用法举例:💯▶️1.5 strlen和sizeof的对比&#…...
springboot整合vue,将vue项目整合到springboot项目中
将vue项目打包后,与springboot项目整合。 第一步,使用springboot中的thymeleaf模板引擎 导入依赖 <!-- thymeleaf 模板 --><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-t…...
C++ 二叉搜索树(BST)的实现(非递归版本与递归版本)与应用
C 二叉搜索树的实现与应用 一.二叉搜索树的特点二.我们要实现的大致框架三.Insert四.InOrder和Find1.InOrder2.Find 五.Erase六.Find,Insert,Erase的递归版本1.FindR2.InsertR3.EraseR 七.析构,拷贝构造,赋值运算符重载1.析构2.拷贝构造3.赋值运算重载 八.Key模型完整代码九.二…...
分类预测 | Matlab实现AOA-SVM算术优化支持向量机的数据分类预测【23年新算法】
分类预测 | Matlab实现AOA-SVM算术优化支持向量机的数据分类预测【23年新算法】 目录 分类预测 | Matlab实现AOA-SVM算术优化支持向量机的数据分类预测【23年新算法】分类效果基本描述程序设计参考资料 分类效果 基本描述 1.Matlab实现AOA-SVM算术优化支持向量机的数据分类预测…...
浏览器访问 AWS ECS 上部署的 Docker 容器(监听 80 端口)
✅ 一、ECS 服务配置 Dockerfile 确保监听 80 端口 EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]或 EXPOSE 80 CMD ["python3", "-m", "http.server", "80"]任务定义(Task Definition&…...
黑马Mybatis
Mybatis 表现层:页面展示 业务层:逻辑处理 持久层:持久数据化保存 在这里插入图片描述 Mybatis快速入门 :print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...
【分享】推荐一些办公小工具
1、PDF 在线转换 https://smallpdf.com/cn/pdf-tools 推荐理由:大部分的转换软件需要收费,要么功能不齐全,而开会员又用不了几次浪费钱,借用别人的又不安全。 这个网站它不需要登录或下载安装。而且提供的免费功能就能满足日常…...
LangChain知识库管理后端接口:数据库操作详解—— 构建本地知识库系统的基础《二》
这段 Python 代码是一个完整的 知识库数据库操作模块,用于对本地知识库系统中的知识库进行增删改查(CRUD)操作。它基于 SQLAlchemy ORM 框架 和一个自定义的装饰器 with_session 实现数据库会话管理。 📘 一、整体功能概述 该模块…...
比较数据迁移后MySQL数据库和OceanBase数据仓库中的表
设计一个MySQL数据库和OceanBase数据仓库的表数据比较的详细程序流程,两张表是相同的结构,都有整型主键id字段,需要每次从数据库分批取得2000条数据,用于比较,比较操作的同时可以再取2000条数据,等上一次比较完成之后,开始比较,直到比较完所有的数据。比较操作需要比较…...
通过 Ansible 在 Windows 2022 上安装 IIS Web 服务器
拓扑结构 这是一个用于通过 Ansible 部署 IIS Web 服务器的实验室拓扑。 前提条件: 在被管理的节点上安装WinRm 准备一张自签名的证书 开放防火墙入站tcp 5985 5986端口 准备自签名证书 PS C:\Users\azureuser> $cert New-SelfSignedCertificate -DnsName &…...
