当前位置: 首页 > news >正文

map|动态规划|单调栈|LeetCode975:奇偶跳

作者推荐

【贪心算法】【中位贪心】.执行操作使频率分数最大

涉及知识点

单调栈 动态规划 map

题目

给定一个整数数组 A,你可以从某一起始索引出发,跳跃一定次数。在你跳跃的过程中,第 1、3、5… 次跳跃称为奇数跳跃,而第 2、4、6… 次跳跃称为偶数跳跃。
你可以按以下方式从索引 i 向后跳转到索引 j(其中 i < j):
在进行奇数跳跃时(如,第 1,3,5… 次跳跃),你将会跳到索引 j,使得 A[i] <= A[j],A[j] 是可能的最小值。如果存在多个这样的索引 j,你只能跳到满足要求的最小索引 j 上。
在进行偶数跳跃时(如,第 2,4,6… 次跳跃),你将会跳到索引 j,使得 A[i] >= A[j],A[j] 是可能的最大值。如果存在多个这样的索引 j,你只能跳到满足要求的最小索引 j 上。
(对于某些索引 i,可能无法进行合乎要求的跳跃。)
如果从某一索引开始跳跃一定次数(可能是 0 次或多次),就可以到达数组的末尾(索引 A.length - 1),那么该索引就会被认为是好的起始索引。
返回好的起始索引的数量。
示例 1:
输入:[10,13,12,14,15]
输出:2
解释:
从起始索引 i = 0 出发,我们可以跳到 i = 2,(因为 A[2] 是 A[1],A[2],A[3],A[4] 中大于或等于 A[0] 的最小值),然后我们就无法继续跳下去了。
从起始索引 i = 1 和 i = 2 出发,我们可以跳到 i = 3,然后我们就无法继续跳下去了。
从起始索引 i = 3 出发,我们可以跳到 i = 4,到达数组末尾。
从起始索引 i = 4 出发,我们已经到达数组末尾。
总之,我们可以从 2 个不同的起始索引(i = 3, i = 4)出发,通过一定数量的跳跃到达数组末尾。
示例 2:
输入:[2,3,1,1,4]
输出:3
解释:
从起始索引 i=0 出发,我们依次可以跳到 i = 1,i = 2,i = 3:
在我们的第一次跳跃(奇数)中,我们先跳到 i = 1,因为 A[1] 是(A[1],A[2],A[3],A[4])中大于或等于 A[0] 的最小值。
在我们的第二次跳跃(偶数)中,我们从 i = 1 跳到 i = 2,因为 A[2] 是(A[2],A[3],A[4])中小于或等于 A[1] 的最大值。A[3] 也是最大的值,但 2 是一个较小的索引,所以我们只能跳到 i = 2,而不能跳到 i = 3。
在我们的第三次跳跃(奇数)中,我们从 i = 2 跳到 i = 3,因为 A[3] 是(A[3],A[4])中大于或等于 A[2] 的最小值。
我们不能从 i = 3 跳到 i = 4,所以起始索引 i = 0 不是好的起始索引。
类似地,我们可以推断:
从起始索引 i = 1 出发, 我们跳到 i = 4,这样我们就到达数组末尾。
从起始索引 i = 2 出发, 我们跳到 i = 3,然后我们就不能再跳了。
从起始索引 i = 3 出发, 我们跳到 i = 4,这样我们就到达数组末尾。
从起始索引 i = 4 出发,我们已经到达数组末尾。
总之,我们可以从 3 个不同的起始索引(i = 1, i = 3, i = 4)出发,通过一定数量的跳跃到达数组末尾。
示例 3:
输入:[5,1,3,4,2]
输出:3
解释:
我们可以从起始索引 1,2,4 出发到达数组末尾。
提示:
1 <= A.length <= 20000
0 <= A[i] < 100000

代码

单调栈

此方法比map巧妙,性能差不多,值得学习。时间复杂度:O(nlogn)。

变量函数解析

indexs计算奇数跳时,arr[index[i]] 升序,且相等的元素,相对顺序不变。计算偶数跳时,arr[index[i]] 降序,且相等的元素,相对顺序不变。
Next计算奇(偶)数跳的下一个位置,如果无法跳,则值为m_c
vStatus记录偶数(奇数)跳能否跳到队尾。vStatus[0][m_c]和vStatus[0][m_c]为false,避免处理边界条件

Next奇数跳为例

令j=index[jj],按jj从小到的顺序,将j入栈,由于arr[index[jj]]是升序,所以:规则一:arr[栈中元素] <=arr[j]。
(sta.top() < j 成立,说明:
规则二:j在sta.top()右边。
规则三:令index[jj2] 为sta.top(),arr[index(jj2,j)]中的数(即大于等于arr[sta.top()] 同时小于等于arr[j]的数)全部在sta.top()的左边,否则出栈了。
结合规则一二三,stat.top()的下一步就是j。

核心代码

class Solution {
public:int oddEvenJumps(vector<int>& arr) {m_c = arr.size();vector<int> indexs(m_c);iota(indexs.begin(), indexs.end(), 0);sort(indexs.begin(), indexs.end(), [&](const int i1, const int i2) {return (arr[i1] < arr[i2]) || ((arr[i1] == arr[i2]) && (i1 < i2)); });const auto& v1 = Next(indexs);sort(indexs.begin(), indexs.end(), [&](const int i1, const int i2) {return (arr[i1] > arr[i2]) || ((arr[i1] == arr[i2]) && (i1 < i2)); });const auto& v2 = Next(indexs);vector<vector<bool>> vStatus(2, vector<bool>(m_c+1));int iRet = 1;vStatus[0][m_c-1] = true;vStatus[1][m_c - 1] = true;for (int i = m_c - 1 - 1; i >= 0; i--){vStatus[0][i] = vStatus[1][v2[i]];//偶数跳vStatus[1][i] = vStatus[0][v1[i]];//奇数跳iRet +=  (int)vStatus[1][i];}return iRet;}vector<int> Next(const vector<int>& indexs){vector<int> vNext(indexs.size(), indexs.size());stack<int> sta;for (int j : indexs){while (sta.size() && (sta.top() < j)){vNext[sta.top()] = j;sta.pop();}sta.emplace(j);}return vNext;}int m_c;
};

测试用例

template<class T>
void Assert(const T& t1, const T& t2)
{assert(t1 == t2);
}template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{if (v1.size() != v2.size()){assert(false);return;}for (int i = 0; i < v1.size(); i++){Assert(v1[i], v2[i]);}
}int main()
{vector<int> arr;{Solution slu;arr = { 10,13,12,14,15 };auto res = slu.oddEvenJumps(arr);Assert(2, res);}{Solution slu;arr = { 2,3,1,1,4 };auto res = slu.oddEvenJumps(arr);Assert(3, res);}{Solution slu;arr = { 5,1,3,4,2 };auto res = slu.oddEvenJumps(arr);Assert(3, res);}//CConsole::Out(res);
}

2023年3月版:map

利用map性能和单调栈差不多,好理解。从后向前遍历各元素,map的键对应arr[i],map的值对应i。如果arr[i],i小的(后加入的)覆盖前面的。
时间复杂度:O(nlogn)。

map

map可以分成有序(单调)map和无序(哈希)map。还可分成单键map和多键map(允许重复的键)。

 class Solution {public:int oddEvenJumps(vector<int>& arr) {vector<vector<bool>> result;result.assign(arr.size(), vector<bool>(2));result[arr.size() - 1][0] = true;result[arr.size() - 1][1] = true;std::map<int, int> mValueIndex;mValueIndex[arr.back()] = arr.size()-1;for (int i = arr.size() - 2; i >= 0; i--){{//奇数跳跃auto it = mValueIndex.lower_bound(arr[i]);if (mValueIndex.end() != it){result[i][0] = result[it->second][1];}}{//偶数跳跃auto it2 = mValueIndex.upper_bound(arr[i]);if (mValueIndex.begin() != it2){--it2;result[i][1] = result[it2->second][0];}mValueIndex[arr[i]] = i;}}int iNum = 0;for (int i = 0; i < arr.size(); i++){if (result[i][0]){iNum++;}}return iNum;}};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法C++ 实现。

相关文章:

map|动态规划|单调栈|LeetCode975:奇偶跳

作者推荐 【贪心算法】【中位贪心】.执行操作使频率分数最大 涉及知识点 单调栈 动态规划 map 题目 给定一个整数数组 A&#xff0c;你可以从某一起始索引出发&#xff0c;跳跃一定次数。在你跳跃的过程中&#xff0c;第 1、3、5… 次跳跃称为奇数跳跃&#xff0c;而第 2、…...

从安全性角度,看“可信数字底座”有何价值

文章目录 每日一句正能量前言概念对比安全技术对比思考与建议 每日一句正能量 不管现在有多么艰辛&#xff0c;我们也要做个生活的舞者。 前言 万向区块链此前提出“可信数字底座”这一概念和技术&#xff0c;即将区块链与物联网、人工智能、隐私计算等数字化技术相融合&#…...

软件设计模式:UML类图

文章目录 前言一、&#x1f4d6;设计模式概述1.软件设计模式的产生背景2.软件设计模式3.设计模式分类 二、&#x1f4e3;UML图1.类图概述2.类的表示法3.类与类之间的关系关联关系&#xff08;1&#xff09;单向关联&#xff08;2&#xff09;双向关联&#xff08;3&#xff09;…...

力扣题目学习笔记(OC + Swift)15. 三数之和

15. 三数之和 给你一个整数数组 nums &#xff0c;判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i ! j、i ! k 且 j ! k &#xff0c;同时还满足 nums[i] nums[j] nums[k] 0 。请 你返回所有和为 0 且不重复的三元组。 注意&#xff1a;答案中不可以包含重复的三元…...

想将电脑屏幕共享到iPhone上,但电脑是Linux系统,可行吗?

常见Windows系统或macOS系统的电脑投屏到手机&#xff0c;难道Linux系统的电脑要投屏就是个难题吗&#xff1f; 想要将Linux系统投屏到iPhone、iPad、安卓设备、鸿蒙设备&#xff0c;其实你可以利用软件AirDroid Cast和Chrome浏览器&#xff01;连接同一网络就可以直接投屏。 第…...

大华 DSS 城市安防数字监控系统 SQL 注入漏洞

漏洞简介 大华DSS数字监控系统itcBulletin接口对传入的数据没有预编译和充足的校验&#xff0c;导致该接口存在SQL注入漏洞&#xff0c;可通过注入漏洞获取数据库敏感信息。 资产测绘 app“dahua-DSS” 漏洞复现 POC: POST /portal/services/itcBulletin?wsdl HTTP/1.1 H…...

vue中的侦听器和组件之间的通信

目录 一、侦听器 监听基本数据类型&#xff1a; 监听引用数据类型&#xff1a; 计算属性和watch区别&#xff1f; 二、组件通信/传值方式 1.父子组件传值 父组件给子组件传值&#xff1a; &#xff08;1&#xff09;props &#xff08;2&#xff09;provide inject &…...

maven-shade-plugin有什么用

maven-shade-plugin 是 Maven 的一个插件&#xff0c;用于创建可执行的 JAR 文件&#xff0c;并且可以将所有依赖项打包到一个 JAR 文件中。 该插件的主要用途是创建包含所有依赖项的“fat” JAR&#xff08;也称为“uber” JAR&#xff09;&#xff0c;使得应用程序可以作为一…...

本地部署 OpenVoice

本地部署 OpenVoice OpenVoice 介绍Qwen-Audio Github 地址部署 OpenVoice克隆代码库创建虚拟环境使用 pip 安装 pytorch使用 pip 安装依赖下载 checkpoint运行 Web UI OpenVoice 介绍 通过 MyShell 进行即时语音克隆。 Qwen-Audio Github 地址 https://github.com/myshell-…...

【模式识别】解锁降维奥秘:深度剖析PCA人脸识别技术

​&#x1f308;个人主页&#xff1a;Sarapines Programmer&#x1f525; 系列专栏&#xff1a;《模式之谜 | 数据奇迹解码》⏰诗赋清音&#xff1a;云生高巅梦远游&#xff0c; 星光点缀碧海愁。 山川深邃情难晤&#xff0c; 剑气凌云志自修。 目录 &#x1f30c;1 初识模式识…...

大模型赋能“AI+电商”,景联文科技提供高质量电商场景数据

据新闻报道&#xff0c;阿里巴巴旗下淘天集团和国际数字商业集团都已建立完整的AI团队。 淘天集团已经推出模特图智能生成、官方客服机器人、万相台无界版等AI工具&#xff0c;训练出了自己的大模型产品 “星辰”&#xff1b; 阿里国际商业集团已成立AI Business&#xff0c;…...

深度比较(lodash 的 isEqual 方法)

_.isEqual() 是 Lodash 提供的一个函数&#xff0c;用于比较两个值是否相等。它会递归地比较两个对象的属性和值&#xff0c;以判断它们是否相等。 这个函数的作用是&#xff1a; 深度比较对象&#xff1a;递归比较两个对象的每一个属性和嵌套对象的属性&#xff0c;判断它们…...

Ansible常用模块详解(附各模块应用实例和Ansible环境安装部署)

目录 一、ansible概述 1、简介 2、Ansible主要功能&#xff1a; 3、Ansible的另一个特点&#xff1a;所有模块都是幂等性 4、Ansible的优点&#xff1a; 5、Ansible的四大组件&#xff1a; 二、ansible环境部署&#xff1a; 1、环境&#xff1a; 2、安装ansible&#…...

QT中网络编程之发送Http协议的Get和Post请求

文章目录 HTTP协议GET请求POST请求QT中对HTTP协议的处理1.QNetworkAccessManager2.QNetworkRequest3.QNetworkReply QT实现GET请求和POST请求Get请求步骤Post请求步骤 测试结果 使用QT的开发产品最终作为一个客户端来使用&#xff0c;很大的一个功能就是要和后端服务器进行交互…...

Java 并发编程 —— Fork/Join 框架的原理详解

目录 一. 前言 二. 并发和并行 2.1. 并发 2.2. 并行 2.3. 分治法 三. ForkJoin 并行处理框架的理论 3.1. ForkJoin 框架概述 3.2. ForkJoin 框架原理 3.3. 工作窃取算法 四. ForkJoin 并行处理框架的实现 4.1. ForkJoinPool 类 4.2. ForkJoinWorkerThread 类 4.3.…...

3-10岁孩子语文能力培养里程碑

文章目录 基础能力3岁4岁5岁6-7岁&#xff08;1-2年级&#xff09;8-9岁&#xff08;3-4年级&#xff09;10岁&#xff08;5年级&#xff09; 阅读推荐&父母执行3岁4-5岁6-7岁&#xff08;1-2年级&#xff09;8-9岁&#xff08;3-4年级&#xff09;10岁&#xff08;5年级&a…...

Vue+ElementUi 基于Tree实现动态节点添加,节点自定义为输入框列

VueElementUi 基于Tree实现动态节点手动添加&#xff0c;节点自定义为输入框列 代码 <el-steps :active"active" finish-status"success" align-center><el-step title"test1"/><el-step title"test2"/><el-st…...

Web前端-JavaScript(js数组和函数)

文章目录 1.数组1.1 数组的概念1.2 创建数组1.3 获取数组中的元素1.4 数组中新增元素1.5 遍历数组 2.函数2.1 函数的概念2.2 函数的使用函数声明调用函数函数的封装 2.3 函数的参数函数参数语法函数形参和实参数量不匹配时 2.4 函数的返回值2.4.1 案例练习 2.5 arguments的使用…...

判断数据是否为整数--函数设计与实现

#定义函数&#xff1a;is_num(s),判断输入的数据是否整数。 #(1)判断是否是数字 def is_num(s):if s.isdigit(): #isdigit()是一个字符串方法&#xff0c;用于检查字符串是否只包含数字字符。如果字符串只包含数字字符&#xff0c;则返回True&#xff1b;否则返回Falsereturn T…...

netty源码:(29)ChannelInboundHandlerAdapter

它实现的方法都有一个ChannelHandlerContext参数&#xff0c;它的方法都是直接调用ChannelHandlerContext参数对应的方法&#xff0c;该方法会调用下一个handler对应的方法。 可以继承这个类&#xff0c;重写感兴趣的方法,比如channelRead. 这个类有个子类&#xff1a;SimpleC…...

设计模式和设计原则回顾

设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...

逻辑回归:给不确定性划界的分类大师

想象你是一名医生。面对患者的检查报告&#xff08;肿瘤大小、血液指标&#xff09;&#xff0c;你需要做出一个**决定性判断**&#xff1a;恶性还是良性&#xff1f;这种“非黑即白”的抉择&#xff0c;正是**逻辑回归&#xff08;Logistic Regression&#xff09;** 的战场&a…...

【解密LSTM、GRU如何解决传统RNN梯度消失问题】

解密LSTM与GRU&#xff1a;如何让RNN变得更聪明&#xff1f; 在深度学习的世界里&#xff0c;循环神经网络&#xff08;RNN&#xff09;以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而&#xff0c;传统RNN存在的一个严重问题——梯度消失&#…...

生成 Git SSH 证书

&#x1f511; 1. ​​生成 SSH 密钥对​​ 在终端&#xff08;Windows 使用 Git Bash&#xff0c;Mac/Linux 使用 Terminal&#xff09;执行命令&#xff1a; ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" ​​参数说明​​&#xff1a; -t rsa&#x…...

Python如何给视频添加音频和字幕

在Python中&#xff0c;给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加&#xff0c;包括必要的代码示例和详细解释。 环境准备 在开始之前&#xff0c;需要安装以下Python库&#xff1a;…...

AI编程--插件对比分析:CodeRider、GitHub Copilot及其他

AI编程插件对比分析&#xff1a;CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展&#xff0c;AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者&#xff0c;分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...

【HTTP三个基础问题】

面试官您好&#xff01;HTTP是超文本传输协议&#xff0c;是互联网上客户端和服务器之间传输超文本数据&#xff08;比如文字、图片、音频、视频等&#xff09;的核心协议&#xff0c;当前互联网应用最广泛的版本是HTTP1.1&#xff0c;它基于经典的C/S模型&#xff0c;也就是客…...

大学生职业发展与就业创业指导教学评价

这里是引用 作为软工2203/2204班的学生&#xff0c;我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要&#xff0c;而您认真负责的教学态度&#xff0c;让课程的每一部分都充满了实用价值。 尤其让我…...

docker 部署发现spring.profiles.active 问题

报错&#xff1a; org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...

SiFli 52把Imagie图片,Font字体资源放在指定位置,编译成指定img.bin和font.bin的问题

分区配置 (ptab.json) img 属性介绍&#xff1a; img 属性指定分区存放的 image 名称&#xff0c;指定的 image 名称必须是当前工程生成的 binary 。 如果 binary 有多个文件&#xff0c;则以 proj_name:binary_name 格式指定文件名&#xff0c; proj_name 为工程 名&…...