当前位置: 首页 > news >正文

63. 不同路径 II 23.12.21(二)

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 1 和 0 来表示。

示例 1:

输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
输出:2
解释:3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:
1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右

示例 2:

输入:obstacleGrid = [[0,1],[0,0]]
输出:1

提示:

  • m == obstacleGrid.length
  • n == obstacleGrid[i].length
  • 1 <= m, n <= 100
  • obstacleGrid[i][j] 为 0 或 1
public class Solution {public int UniquePathsWithObstacles(int[][] obstacleGrid) {int m = obstacleGrid.Length;int n = obstacleGrid[0].Length;int[] dp = new int[n];dp[0]=obstacleGrid[0][0]==0?1:0;for(int i=0;i<m;i++){for(int j=0;j<n;j++){if(obstacleGrid[i][j]==1){dp[j]=0;continue;}if(j-1>=0&&obstacleGrid[i][j-1]==0) dp[j]+=dp[j-1];}}return dp[n-1];}
}

相关文章:

63. 不同路径 II 23.12.21(二)

一个机器人位于一个 m x n 网格的左上角 &#xff08;起始点在下图中标记为 “Start” &#xff09;。 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角&#xff08;在下图中标记为 “Finish”&#xff09;。 现在考虑网格中有障碍物。那么从左上角到右下角…...

【线性代数】两个向量组等价,其中一个向量组线性无关,另一个向量组也是线性无关吗?

一、问题 两个向量组等价,其中一个向量组线性无关,另一个向量组也是线性无关吗? 二、答案 不一定,当两个向量组中的向量个数也相同时,结论才成立.若向量个数不相同,结论不成立. 例如&#xff1a; 向量组一&#xff1a;(1,0),(0,1) 向量组二&#xff1a;(1,0),(0,1),(1,1) 两…...

c语言:指针作为参数传递

探究实参与形参它们相互独立 由于主调函数的变量a&#xff0c;b与被调函数的形参x&#xff0c;y它们相互独立。函数 swap 可以修改变量x&#xff0c;y&#xff0c;但是却无法影响到主调函数中的a&#xff0c;b。 现在利用取地址运算符&#xff0c;分别打印它们的首地址&#x…...

YOLOv5性能评估指标->mAP、Precision、Recall、FPS、Confienc (讲解论文关注的主要指标)

简介 这篇博客&#xff0c;主要给大家讲解我们在训练yolov5时生成的结果文件中各个图片及其中指标的含义&#xff0c;帮助大家更深入的理解&#xff0c;以及我们在评估模型时和发表论文时主要关注的参数有那些。本文通过举例训练过程中的某一时间的结果来帮助大家理解&#xf…...

陶建辉在 CIAS 2023 谈“新能源汽车的数字化”

近年&#xff0c;中国的新能源汽车发展迅猛&#xff0c;在全球竞争中表现出色&#xff0c;已经连续 8 年保持全球销量第一。在新兴技术的推动下&#xff0c;新能源汽车的数字化转型也正在加速进行&#xff0c;从汽车制造到能源利用、人机交互&#xff0c;各个环节都在进行数字化…...

PSP - 结构生物学中的机器学习 (NIPS MLSB Workshop 2023.12)

欢迎关注我的CSDN&#xff1a;https://spike.blog.csdn.net/ 本文地址&#xff1a;https://spike.blog.csdn.net/article/details/135120094 Machine Learning in Structural Biology (机器学习在结构生物学中) 网址&#xff1a;https://www.mlsb.io/ Workshop at the 37th Co…...

某领先的集成电路研发中心:建立跨网交换平台 杜绝数据泄露风险

1、客户介绍 某技术领先的集成电路研发中心&#xff0c;是产学研合作的国家级集成电路研发中心&#xff0c;致力于解决重大共性技术的研发及服务支撑问题。该中心积极探索国际化道路&#xff0c;不断提升国际影响力&#xff0c;与多家国际著名集成电路企业和研发机构建立技术合…...

map|动态规划|单调栈|LeetCode975:奇偶跳

作者推荐 【贪心算法】【中位贪心】.执行操作使频率分数最大 涉及知识点 单调栈 动态规划 map 题目 给定一个整数数组 A&#xff0c;你可以从某一起始索引出发&#xff0c;跳跃一定次数。在你跳跃的过程中&#xff0c;第 1、3、5… 次跳跃称为奇数跳跃&#xff0c;而第 2、…...

从安全性角度,看“可信数字底座”有何价值

文章目录 每日一句正能量前言概念对比安全技术对比思考与建议 每日一句正能量 不管现在有多么艰辛&#xff0c;我们也要做个生活的舞者。 前言 万向区块链此前提出“可信数字底座”这一概念和技术&#xff0c;即将区块链与物联网、人工智能、隐私计算等数字化技术相融合&#…...

软件设计模式:UML类图

文章目录 前言一、&#x1f4d6;设计模式概述1.软件设计模式的产生背景2.软件设计模式3.设计模式分类 二、&#x1f4e3;UML图1.类图概述2.类的表示法3.类与类之间的关系关联关系&#xff08;1&#xff09;单向关联&#xff08;2&#xff09;双向关联&#xff08;3&#xff09;…...

力扣题目学习笔记(OC + Swift)15. 三数之和

15. 三数之和 给你一个整数数组 nums &#xff0c;判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i ! j、i ! k 且 j ! k &#xff0c;同时还满足 nums[i] nums[j] nums[k] 0 。请 你返回所有和为 0 且不重复的三元组。 注意&#xff1a;答案中不可以包含重复的三元…...

想将电脑屏幕共享到iPhone上,但电脑是Linux系统,可行吗?

常见Windows系统或macOS系统的电脑投屏到手机&#xff0c;难道Linux系统的电脑要投屏就是个难题吗&#xff1f; 想要将Linux系统投屏到iPhone、iPad、安卓设备、鸿蒙设备&#xff0c;其实你可以利用软件AirDroid Cast和Chrome浏览器&#xff01;连接同一网络就可以直接投屏。 第…...

大华 DSS 城市安防数字监控系统 SQL 注入漏洞

漏洞简介 大华DSS数字监控系统itcBulletin接口对传入的数据没有预编译和充足的校验&#xff0c;导致该接口存在SQL注入漏洞&#xff0c;可通过注入漏洞获取数据库敏感信息。 资产测绘 app“dahua-DSS” 漏洞复现 POC: POST /portal/services/itcBulletin?wsdl HTTP/1.1 H…...

vue中的侦听器和组件之间的通信

目录 一、侦听器 监听基本数据类型&#xff1a; 监听引用数据类型&#xff1a; 计算属性和watch区别&#xff1f; 二、组件通信/传值方式 1.父子组件传值 父组件给子组件传值&#xff1a; &#xff08;1&#xff09;props &#xff08;2&#xff09;provide inject &…...

maven-shade-plugin有什么用

maven-shade-plugin 是 Maven 的一个插件&#xff0c;用于创建可执行的 JAR 文件&#xff0c;并且可以将所有依赖项打包到一个 JAR 文件中。 该插件的主要用途是创建包含所有依赖项的“fat” JAR&#xff08;也称为“uber” JAR&#xff09;&#xff0c;使得应用程序可以作为一…...

本地部署 OpenVoice

本地部署 OpenVoice OpenVoice 介绍Qwen-Audio Github 地址部署 OpenVoice克隆代码库创建虚拟环境使用 pip 安装 pytorch使用 pip 安装依赖下载 checkpoint运行 Web UI OpenVoice 介绍 通过 MyShell 进行即时语音克隆。 Qwen-Audio Github 地址 https://github.com/myshell-…...

【模式识别】解锁降维奥秘:深度剖析PCA人脸识别技术

​&#x1f308;个人主页&#xff1a;Sarapines Programmer&#x1f525; 系列专栏&#xff1a;《模式之谜 | 数据奇迹解码》⏰诗赋清音&#xff1a;云生高巅梦远游&#xff0c; 星光点缀碧海愁。 山川深邃情难晤&#xff0c; 剑气凌云志自修。 目录 &#x1f30c;1 初识模式识…...

大模型赋能“AI+电商”,景联文科技提供高质量电商场景数据

据新闻报道&#xff0c;阿里巴巴旗下淘天集团和国际数字商业集团都已建立完整的AI团队。 淘天集团已经推出模特图智能生成、官方客服机器人、万相台无界版等AI工具&#xff0c;训练出了自己的大模型产品 “星辰”&#xff1b; 阿里国际商业集团已成立AI Business&#xff0c;…...

深度比较(lodash 的 isEqual 方法)

_.isEqual() 是 Lodash 提供的一个函数&#xff0c;用于比较两个值是否相等。它会递归地比较两个对象的属性和值&#xff0c;以判断它们是否相等。 这个函数的作用是&#xff1a; 深度比较对象&#xff1a;递归比较两个对象的每一个属性和嵌套对象的属性&#xff0c;判断它们…...

Ansible常用模块详解(附各模块应用实例和Ansible环境安装部署)

目录 一、ansible概述 1、简介 2、Ansible主要功能&#xff1a; 3、Ansible的另一个特点&#xff1a;所有模块都是幂等性 4、Ansible的优点&#xff1a; 5、Ansible的四大组件&#xff1a; 二、ansible环境部署&#xff1a; 1、环境&#xff1a; 2、安装ansible&#…...

Android Wi-Fi 连接失败日志分析

1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分&#xff1a; 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析&#xff1a; CTR…...

智慧医疗能源事业线深度画像分析(上)

引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...

基础测试工具使用经验

背景 vtune&#xff0c;perf, nsight system等基础测试工具&#xff0c;都是用过的&#xff0c;但是没有记录&#xff0c;都逐渐忘了。所以写这篇博客总结记录一下&#xff0c;只要以后发现新的用法&#xff0c;就记得来编辑补充一下 perf 比较基础的用法&#xff1a; 先改这…...

python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)

更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

dify打造数据可视化图表

一、概述 在日常工作和学习中&#xff0c;我们经常需要和数据打交道。无论是分析报告、项目展示&#xff0c;还是简单的数据洞察&#xff0c;一个清晰直观的图表&#xff0c;往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server&#xff0c;由蚂蚁集团 AntV 团队…...

USB Over IP专用硬件的5个特点

USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中&#xff0c;从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备&#xff08;如专用硬件设备&#xff09;&#xff0c;从而消除了直接物理连接的需要。USB over IP的…...

python报错No module named ‘tensorflow.keras‘

是由于不同版本的tensorflow下的keras所在的路径不同&#xff0c;结合所安装的tensorflow的目录结构修改from语句即可。 原语句&#xff1a; from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后&#xff1a; from tensorflow.python.keras.lay…...

AGain DB和倍数增益的关系

我在设置一款索尼CMOS芯片时&#xff0c;Again增益0db变化为6DB&#xff0c;画面的变化只有2倍DN的增益&#xff0c;比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析&#xff1a; 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...

莫兰迪高级灰总结计划简约商务通用PPT模版

莫兰迪高级灰总结计划简约商务通用PPT模版&#xff0c;莫兰迪调色板清新简约工作汇报PPT模版&#xff0c;莫兰迪时尚风极简设计PPT模版&#xff0c;大学生毕业论文答辩PPT模版&#xff0c;莫兰迪配色总结计划简约商务通用PPT模版&#xff0c;莫兰迪商务汇报PPT模版&#xff0c;…...