当前位置: 首页 > news >正文

63. 不同路径 II 23.12.21(二)

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 1 和 0 来表示。

示例 1:

输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
输出:2
解释:3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:
1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右

示例 2:

输入:obstacleGrid = [[0,1],[0,0]]
输出:1

提示:

  • m == obstacleGrid.length
  • n == obstacleGrid[i].length
  • 1 <= m, n <= 100
  • obstacleGrid[i][j] 为 0 或 1
public class Solution {public int UniquePathsWithObstacles(int[][] obstacleGrid) {int m = obstacleGrid.Length;int n = obstacleGrid[0].Length;int[] dp = new int[n];dp[0]=obstacleGrid[0][0]==0?1:0;for(int i=0;i<m;i++){for(int j=0;j<n;j++){if(obstacleGrid[i][j]==1){dp[j]=0;continue;}if(j-1>=0&&obstacleGrid[i][j-1]==0) dp[j]+=dp[j-1];}}return dp[n-1];}
}

相关文章:

63. 不同路径 II 23.12.21(二)

一个机器人位于一个 m x n 网格的左上角 &#xff08;起始点在下图中标记为 “Start” &#xff09;。 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角&#xff08;在下图中标记为 “Finish”&#xff09;。 现在考虑网格中有障碍物。那么从左上角到右下角…...

【线性代数】两个向量组等价,其中一个向量组线性无关,另一个向量组也是线性无关吗?

一、问题 两个向量组等价,其中一个向量组线性无关,另一个向量组也是线性无关吗? 二、答案 不一定,当两个向量组中的向量个数也相同时,结论才成立.若向量个数不相同,结论不成立. 例如&#xff1a; 向量组一&#xff1a;(1,0),(0,1) 向量组二&#xff1a;(1,0),(0,1),(1,1) 两…...

c语言:指针作为参数传递

探究实参与形参它们相互独立 由于主调函数的变量a&#xff0c;b与被调函数的形参x&#xff0c;y它们相互独立。函数 swap 可以修改变量x&#xff0c;y&#xff0c;但是却无法影响到主调函数中的a&#xff0c;b。 现在利用取地址运算符&#xff0c;分别打印它们的首地址&#x…...

YOLOv5性能评估指标->mAP、Precision、Recall、FPS、Confienc (讲解论文关注的主要指标)

简介 这篇博客&#xff0c;主要给大家讲解我们在训练yolov5时生成的结果文件中各个图片及其中指标的含义&#xff0c;帮助大家更深入的理解&#xff0c;以及我们在评估模型时和发表论文时主要关注的参数有那些。本文通过举例训练过程中的某一时间的结果来帮助大家理解&#xf…...

陶建辉在 CIAS 2023 谈“新能源汽车的数字化”

近年&#xff0c;中国的新能源汽车发展迅猛&#xff0c;在全球竞争中表现出色&#xff0c;已经连续 8 年保持全球销量第一。在新兴技术的推动下&#xff0c;新能源汽车的数字化转型也正在加速进行&#xff0c;从汽车制造到能源利用、人机交互&#xff0c;各个环节都在进行数字化…...

PSP - 结构生物学中的机器学习 (NIPS MLSB Workshop 2023.12)

欢迎关注我的CSDN&#xff1a;https://spike.blog.csdn.net/ 本文地址&#xff1a;https://spike.blog.csdn.net/article/details/135120094 Machine Learning in Structural Biology (机器学习在结构生物学中) 网址&#xff1a;https://www.mlsb.io/ Workshop at the 37th Co…...

某领先的集成电路研发中心:建立跨网交换平台 杜绝数据泄露风险

1、客户介绍 某技术领先的集成电路研发中心&#xff0c;是产学研合作的国家级集成电路研发中心&#xff0c;致力于解决重大共性技术的研发及服务支撑问题。该中心积极探索国际化道路&#xff0c;不断提升国际影响力&#xff0c;与多家国际著名集成电路企业和研发机构建立技术合…...

map|动态规划|单调栈|LeetCode975:奇偶跳

作者推荐 【贪心算法】【中位贪心】.执行操作使频率分数最大 涉及知识点 单调栈 动态规划 map 题目 给定一个整数数组 A&#xff0c;你可以从某一起始索引出发&#xff0c;跳跃一定次数。在你跳跃的过程中&#xff0c;第 1、3、5… 次跳跃称为奇数跳跃&#xff0c;而第 2、…...

从安全性角度,看“可信数字底座”有何价值

文章目录 每日一句正能量前言概念对比安全技术对比思考与建议 每日一句正能量 不管现在有多么艰辛&#xff0c;我们也要做个生活的舞者。 前言 万向区块链此前提出“可信数字底座”这一概念和技术&#xff0c;即将区块链与物联网、人工智能、隐私计算等数字化技术相融合&#…...

软件设计模式:UML类图

文章目录 前言一、&#x1f4d6;设计模式概述1.软件设计模式的产生背景2.软件设计模式3.设计模式分类 二、&#x1f4e3;UML图1.类图概述2.类的表示法3.类与类之间的关系关联关系&#xff08;1&#xff09;单向关联&#xff08;2&#xff09;双向关联&#xff08;3&#xff09;…...

力扣题目学习笔记(OC + Swift)15. 三数之和

15. 三数之和 给你一个整数数组 nums &#xff0c;判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i ! j、i ! k 且 j ! k &#xff0c;同时还满足 nums[i] nums[j] nums[k] 0 。请 你返回所有和为 0 且不重复的三元组。 注意&#xff1a;答案中不可以包含重复的三元…...

想将电脑屏幕共享到iPhone上,但电脑是Linux系统,可行吗?

常见Windows系统或macOS系统的电脑投屏到手机&#xff0c;难道Linux系统的电脑要投屏就是个难题吗&#xff1f; 想要将Linux系统投屏到iPhone、iPad、安卓设备、鸿蒙设备&#xff0c;其实你可以利用软件AirDroid Cast和Chrome浏览器&#xff01;连接同一网络就可以直接投屏。 第…...

大华 DSS 城市安防数字监控系统 SQL 注入漏洞

漏洞简介 大华DSS数字监控系统itcBulletin接口对传入的数据没有预编译和充足的校验&#xff0c;导致该接口存在SQL注入漏洞&#xff0c;可通过注入漏洞获取数据库敏感信息。 资产测绘 app“dahua-DSS” 漏洞复现 POC: POST /portal/services/itcBulletin?wsdl HTTP/1.1 H…...

vue中的侦听器和组件之间的通信

目录 一、侦听器 监听基本数据类型&#xff1a; 监听引用数据类型&#xff1a; 计算属性和watch区别&#xff1f; 二、组件通信/传值方式 1.父子组件传值 父组件给子组件传值&#xff1a; &#xff08;1&#xff09;props &#xff08;2&#xff09;provide inject &…...

maven-shade-plugin有什么用

maven-shade-plugin 是 Maven 的一个插件&#xff0c;用于创建可执行的 JAR 文件&#xff0c;并且可以将所有依赖项打包到一个 JAR 文件中。 该插件的主要用途是创建包含所有依赖项的“fat” JAR&#xff08;也称为“uber” JAR&#xff09;&#xff0c;使得应用程序可以作为一…...

本地部署 OpenVoice

本地部署 OpenVoice OpenVoice 介绍Qwen-Audio Github 地址部署 OpenVoice克隆代码库创建虚拟环境使用 pip 安装 pytorch使用 pip 安装依赖下载 checkpoint运行 Web UI OpenVoice 介绍 通过 MyShell 进行即时语音克隆。 Qwen-Audio Github 地址 https://github.com/myshell-…...

【模式识别】解锁降维奥秘:深度剖析PCA人脸识别技术

​&#x1f308;个人主页&#xff1a;Sarapines Programmer&#x1f525; 系列专栏&#xff1a;《模式之谜 | 数据奇迹解码》⏰诗赋清音&#xff1a;云生高巅梦远游&#xff0c; 星光点缀碧海愁。 山川深邃情难晤&#xff0c; 剑气凌云志自修。 目录 &#x1f30c;1 初识模式识…...

大模型赋能“AI+电商”,景联文科技提供高质量电商场景数据

据新闻报道&#xff0c;阿里巴巴旗下淘天集团和国际数字商业集团都已建立完整的AI团队。 淘天集团已经推出模特图智能生成、官方客服机器人、万相台无界版等AI工具&#xff0c;训练出了自己的大模型产品 “星辰”&#xff1b; 阿里国际商业集团已成立AI Business&#xff0c;…...

深度比较(lodash 的 isEqual 方法)

_.isEqual() 是 Lodash 提供的一个函数&#xff0c;用于比较两个值是否相等。它会递归地比较两个对象的属性和值&#xff0c;以判断它们是否相等。 这个函数的作用是&#xff1a; 深度比较对象&#xff1a;递归比较两个对象的每一个属性和嵌套对象的属性&#xff0c;判断它们…...

Ansible常用模块详解(附各模块应用实例和Ansible环境安装部署)

目录 一、ansible概述 1、简介 2、Ansible主要功能&#xff1a; 3、Ansible的另一个特点&#xff1a;所有模块都是幂等性 4、Ansible的优点&#xff1a; 5、Ansible的四大组件&#xff1a; 二、ansible环境部署&#xff1a; 1、环境&#xff1a; 2、安装ansible&#…...

Ubuntu系统下交叉编译openssl

一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机&#xff1a;Ubuntu 20.04.6 LTSHost&#xff1a;ARM32位交叉编译器&#xff1a;arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...

rknn优化教程(二)

文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK&#xff0c;开始写第二篇的内容了。这篇博客主要能写一下&#xff1a; 如何给一些三方库按照xmake方式进行封装&#xff0c;供调用如何按…...

Zustand 状态管理库:极简而强大的解决方案

Zustand 是一个轻量级、快速和可扩展的状态管理库&#xff0c;特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...

PHP和Node.js哪个更爽?

先说结论&#xff0c;rust完胜。 php&#xff1a;laravel&#xff0c;swoole&#xff0c;webman&#xff0c;最开始在苏宁的时候写了几年php&#xff0c;当时觉得php真的是世界上最好的语言&#xff0c;因为当初活在舒适圈里&#xff0c;不愿意跳出来&#xff0c;就好比当初活在…...

Admin.Net中的消息通信SignalR解释

定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...

【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表

1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域&#xff0c;向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能&#xff0c;能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作&#xff0c;并通过具体…...

AI,如何重构理解、匹配与决策?

AI 时代&#xff0c;我们如何理解消费&#xff1f; 作者&#xff5c;王彬 封面&#xff5c;Unplash 人们通过信息理解世界。 曾几何时&#xff0c;PC 与移动互联网重塑了人们的购物路径&#xff1a;信息变得唾手可得&#xff0c;商品决策变得高度依赖内容。 但 AI 时代的来…...

基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解

JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用&#xff0c;结合SQLite数据库实现联系人管理功能&#xff0c;并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能&#xff0c;同时可以最小化到系统…...

CRMEB 中 PHP 短信扩展开发:涵盖一号通、阿里云、腾讯云、创蓝

目前已有一号通短信、阿里云短信、腾讯云短信扩展 扩展入口文件 文件目录 crmeb\services\sms\Sms.php 默认驱动类型为&#xff1a;一号通 namespace crmeb\services\sms;use crmeb\basic\BaseManager; use crmeb\services\AccessTokenServeService; use crmeb\services\sms\…...