当前位置: 首页 > news >正文

Leetcode算法系列| 4. 寻找两个正序数组的中位数

目录

  • 1.题目
  • 2.题解
    • C# 解法一:合并List根据长度找中位数
    • C# 解法二:归并排序后根据长度找中位数
    • C# 解法三:方法二的优化,不真实添加到list
    • C# 解法四:第k小数
    • C# 解法五:从中位数的概念定义入手

1.题目

给定两个大小分别为 m 和 n 的正序(从小到大)数组 nums1nums2。请你找出并返回这两个正序数组的 中位数 。

算法的时间复杂度应该为 O(log (m+n))

  • 示例1:
输入:nums1 = [1,3], nums2 = [2]
输出:2.00000
解释:合并数组 = [1,2,3] ,中位数 2
  • 示例 2:
输入:nums1 = [1,2], nums2 = [3,4]
输出:2.50000
解释:合并数组 = [1,2,3,4] ,中位数 (2 + 3) / 2 = 2.5
  • 提示:
    • nums1.length == m
    • snums2.length == n
    • 0 <= m <= 1000
    • 0 <= n <= 1000
    • 1 <= m + n <= 2000
    • -10^6 <= nums1[i], nums2[i] <= 10^6

2.题解

C# 解法一:合并List根据长度找中位数

  • 提new 一个 List , 并将 nums1 和 nums2 都添加到list 中,然后进行排序。对于排序后的 list, 根据长度计算出中位数的index,进而计算出最终结果。假设合并后的list长度为13,则从小到大第7个数字为中位数,resultIndex=6;假设合并后的list长度为14,则从小到大第7,8个数字的平均值为中位数,index 分别为 6,7,此时resultIndex =7,resultIndex-1 =6 , 结果为 ( list[resultIndex-1] + list[resultIndex] ) / 2.0 ;
public class Solution {public double FindMedianSortedArrays(int[] nums1, int[] nums2){int m = nums1.Length;int n = nums2.Length;int len = m + n;var resultIndex = len / 2;List<int> list = new List<int>(nums1);list.AddRange(nums2);list.Sort();if (len % 2 == 0){return (list[resultIndex - 1] + list[resultIndex]) / 2.0;}else{return list[resultIndex];}}
}

1

  • 时间复杂度:O( (m+n)(1+log(m+n) ))
    • 将长度为m,n的两个数组添加到list,复杂度分别为常数级的m和n ;list.Sort()的复杂度根据官方文档可得为 (m+n)log(m+n),所以该方法时间复杂度为 O( m+n+(m+n)log(m+n) ) = O( (m+n)(1+log(m+n) ))
  • 空间复杂度:O(m+n)
    • 使用list的长度为m+n.

C# 解法二:归并排序后根据长度找中位数

  • 方法一使用了list.Sort() 方法,可以对list进行排序,但是,若题目给出的nums1 和 nums2 是无序数组,使用 list.Sort() 才算是 物有所用。 本题中 nums1 和 nums2 是有序数组,所以使用 list.Sort() 有写 杀鸡用宰牛刀的感觉,换句话说,这里面存在着效率的浪费。我们可以利用 【nums1 和 nums2 是有序数组】 这个条件,来精简我们的排序。
public class Solution {public double FindMedianSortedArrays(int[] nums1, int[] nums2){// nums1 与 nums2 有序添加到list中List<int> list = new List<int>();int i = 0, j = 0;int m = nums1.Length;int n = nums2.Length;int len = m + n;var resultIndex = len / 2;while (i < m && j < n){if (nums1[i] < nums2[j])list.Add(nums1[i++]);elselist.Add(nums2[j++]);}while (i < m) list.Add(nums1[i++]);while (j < n) list.Add(nums2[j++]);if (len % 2 == 0){return (list[resultIndex - 1] + list[resultIndex]) / 2.0;}else{return list[resultIndex];}}
}

2

  • 时间复杂度:O(m+n)
    • i 和 j 一起把长度为 m 和 n 的两个数组遍历了一遍,所以时间复杂度为 O(m+n)
  • 空间复杂度:O(m+n)
    • 使用list的长度为m+n.

C# 解法三:方法二的优化,不真实添加到list

  • 对于方法二,我们在已知 resultIndex 的情况下,也可以不把 nums1 和 nums2 真实添加到 list 中,只需要在i 和 j 不断向右移动的过程中,计算是否到达了 resultIndex 即可。 若到达了 resultIndex,可以直接返回结果,而不必再处理后面的数据。但是相对的,我们需要在 i 或者 j 向右移动时,判断是否到达了resultIndex.
public class Solution {public double FindMedianSortedArrays(int[] nums1, int[] nums2){int i = 0, j = 0, m = nums1.Length, n = nums2.Length;int len = m + n;int resultIndex = len / 2;int resultIndexPre = resultIndex - 1;int result = 0, resultPre = 0;  bool isTwoResult = len % 2 == 0;while (i < m || j < n){var nums1ii = i < m ? nums1[i] : int.MaxValue;var nums2jj = j < n ? nums2[j] : int.MaxValue;if (nums1ii < nums2jj){if (i + j == resultIndexPre) resultPre = nums1[i];if (i + j == resultIndex){result = nums1[i];if (isTwoResult) return (resultPre + result) / 2.0;else return result;}i++;}else{if (i + j == resultIndexPre) resultPre = nums2[j];if (i + j == resultIndex){result = nums2[j];if (isTwoResult) return (resultPre + result) / 2.0;else return result;}j++;}}return 0;}
}

在这里插入图片描述

  • 时间复杂度:O(m+n)
    • i 和 j 一起把长度为 m 和 n 的两个数组遍历了一半,但是每一步都需要判断当前i+j的值是否等于resultIndex,所以时间复杂度仍可认为 O(m+n)
  • 空间复杂度:O(1)
    • 对比方法二,不再使用list,只使用了几个变量来存值,所以空间复杂度为O(1)

C# 解法四:第k小数

  • 前面的几种方法,时间复杂度都没有达到题目要求的 O(log(m+n)) 。 看到log,很明显需要使用二分法。根据 windliang提供的思路,题目求中位数,实际上是求第 k 小数的一种特殊情况,而求第 k 小数 有一种算法。

方法三中,i 和 j 每次向右移动一位时,相当于去掉了一个不可能是中位数的值,也就是一个一个的排除。由于给定的两个数组是有序的,所以我们完全可以一半一半的排除。假设我们要找第 k 小数,我们每次循环可以安全的排除掉 k/2 个数。

public class Solution {public double FindMedianSortedArrays(int[] nums1, int[] nums2){int n = nums1.Length;int m = nums2.Length;int len = n + m;int kPre = (len + 1) / 2;int k = (len + 2) / 2;if (len % 2 == 0)return (GetKth(nums1, 0, n - 1, nums2, 0, m - 1, kPre) + GetKth(nums1, 0, n - 1, nums2, 0, m - 1, k)) * 0.5;elsereturn GetKth(nums1, 0, n - 1, nums2, 0, m - 1, k);}private int GetKth(int[] nums1, int start1, int end1, int[] nums2, int start2, int end2, int k){int len1 = end1 - start1 + 1;int len2 = end2 - start2 + 1;//让 len1 的长度小于 len2,这样就能保证如果有数组空了,一定是 len1 if (len1 > len2) return GetKth(nums2, start2, end2, nums1, start1, end1, k);if (len1 == 0) return nums2[start2 + k - 1];if (k == 1) return Math.Min(nums1[start1], nums2[start2]);int i = start1 + Math.Min(len1, k / 2) - 1;int j = start2 + Math.Min(len2, k / 2) - 1;if (nums1[i] > nums2[j])return GetKth(nums1, start1, end1, nums2, j + 1, end2, k - (j - start2 + 1));elsereturn GetKth(nums1, i + 1, end1, nums2, start2, end2, k - (i - start1 + 1));}
}

1

  • 时间复杂度:O(log(m+n))
    • i每进行依次循环,就减少 k/2个元素,所以时间复杂度为 O(log(k)) , 而 k = (m+n)/2 , 所以最终复杂度是 O(log(m+n))
  • 空间复杂度:O(1)
    • 只使用了几个变量来存值,递归是尾递归不占用堆栈, 所以空间复杂度为O(1)

C# 解法五:从中位数的概念定义入手

  • 该方法参考了 LeetCode 题解的 官方题解 以及 windliang 的题解。
    首先我们来看一下百度百科中位数的定义:https://baike.baidu.com/item/%E4%B8%AD%E4%BD%8D%E6%95%B0/3087401?fr=aladdin
public class Solution {public double FindMedianSortedArrays(int[] A, int[] B){int m = A.Length;int n = B.Length;//保证第一个数组是较短的if (m > n) return FindMedianSortedArrays(B, A);//正在寻找的范围为 [ A[iMin],A[iMax] ) , 左闭右开。二分查找取i=(iMin+iMax)/2int iMin = 0, iMax = m;while (iMin <= iMax){int i = (iMin + iMax) / 2;int j = (m + n + 1) / 2 - i;if (j != 0 && i != m && B[j - 1] > A[i]){ // i 需要增大iMin = i + 1;}else if (i != 0 && j != n && A[i - 1] > B[j]){ // i 需要减小iMax = i - 1;}else{ // 达到要求,并且将边界条件列出来单独考虑int maxLeft = 0;if (i == 0) { maxLeft = B[j - 1]; }else if (j == 0) { maxLeft = A[i - 1]; }else { maxLeft = Math.Max(A[i - 1], B[j - 1]); }if ((m + n) % 2 == 1) { return maxLeft; } // 奇数的话不需要考虑右半部分int minRight = 0;if (i == m) { minRight = B[j]; }else if (j == n) { minRight = A[i]; }else { minRight = Math.Min(B[j], A[i]); }return (maxLeft + minRight) / 2.0; //如果是偶数的话返回结果}}return 0.0;}
}

5

  • 时间复杂度:O(log(min(m,n))
    • 我们对较短的数组进行了二分查找,所以时间复杂度是 O(log(min(m,n))
  • 空间复杂度:O(1)
    • 只使用了几个变量来存值,所以空间复杂度为O(1)

相关文章:

Leetcode算法系列| 4. 寻找两个正序数组的中位数

目录 1.题目2.题解C# 解法一&#xff1a;合并List根据长度找中位数C# 解法二&#xff1a;归并排序后根据长度找中位数C# 解法三&#xff1a;方法二的优化&#xff0c;不真实添加到listC# 解法四&#xff1a;第k小数C# 解法五&#xff1a;从中位数的概念定义入手 1.题目 给定两个…...

Java整合APNS推送消息-IOS-APP(基于.p12推送证书)

推送整体流程 1.在开发者中心申请对应的证书&#xff08;我用的是.p12文件&#xff09; 2.苹果手机用户注册到APNS&#xff0c;APNS将注册的token返回给APP&#xff08;服务端接收使用&#xff09;。 3.后台服务连接APNS&#xff0c;获取连接对象 4.后台服务构建消息载体 5.后台…...

C语言strcpy函数用法

C语言strcpy函数用法 大家好&#xff0c;我是免费搭建查券返利机器人赚佣金就用微赚淘客系统3.0的小编&#xff0c;也是冬天不穿秋裤&#xff0c;天冷也要风度的程序猿&#xff01;今天&#xff0c;让我们一起深入了解C语言中的strcpy函数&#xff0c;这是一个在字符串处理中非…...

汽车服务品牌网站建设的作用是什么

汽车服务涵盖多个层面&#xff0c;在保修维护这一块更是精准到了车内车外&#xff0c;无论是品牌商还是市场中各维修部&#xff0c;都能给到车辆很好的维修养护服务。如今车辆的人均拥有量已经非常高&#xff0c;也因此市场中围绕汽车相关的从业者也比较多。 首先就是拓客引流…...

【iOS】UICollectionView

文章目录 前言一、实现简单九宫格布局二、UICollectionView中的常用方法和属性1.UICollectionViewFlowLayout相关属性2.UICollectionView相关属性 三、协议和代理方法&#xff1a;四、九宫格式的布局进行升级五、实现瀑布流布局实现思路实现原理代码调用顺序实现步骤实现效果 总…...

Linux poll 和 select 机制

poll select 介绍 使用非阻塞 I/O 的应用程序常常使用 poll, select, 和 epoll 系统调用. poll, select 和 epoll 本质上有相同的功能: 每个允许一个进程来决定它是否可读或者写一个 或多个文件而不阻塞. 这些调用也可阻塞进程直到任何一个给定集合的文件描述符可用来 读或写.…...

【JVM基础】 JVM 如何加载一个类以及类加载机制

文章目录 1、什么时候一个类会被加载&#xff1f;1、包含 main 方法的主类2、非 包含 main 方法的主类&#xff0c;什么时候去加载&#xff1f; 3、类加载器如何加载一个类&#xff1f;1、验证阶段&#xff1a;2、准备阶段&#xff1a;3、解析阶段&#xff1a;4、初始化&#x…...

Android Studio使用Genymotion

1. Genymotion介绍 GenyMotion速度之快令人发指&#xff0c;模拟效果堪比真机调试&#xff0c;支持绝大部分的模拟器功能&#xff0c;甚至包括语音&#xff0c;Google Now&#xff0c;支持eclipse, android studio。非常适合用来开发和演示效果。 2. Genymotion下载 Genymotio…...

Mysql sql_mode参数配置

今天在使用数据库查询时使用了Group语句&#xff0c;遇到问题&#xff1a; SELECT t1.UnderlyingInstrumentID, t2.* FROM t_OptionInstrument t1 LEFT JOIN t_Instrument t2 ON t2.InstrumentID t1.UnderlyingInstrumentID GROUP BY t1.UnderlyingInstrumentID > 1055 - …...

SpringIOC之AbstractMessageSource

博主介绍&#xff1a;✌全网粉丝5W&#xff0c;全栈开发工程师&#xff0c;从事多年软件开发&#xff0c;在大厂呆过。持有软件中级、六级等证书。可提供微服务项目搭建与毕业项目实战&#xff0c;博主也曾写过优秀论文&#xff0c;查重率极低&#xff0c;在这方面有丰富的经验…...

详解Vue3中的基础路由和动态路由

本文主要介绍Vue3中的基础路由和动态路由。 目录 一、基础路由二、动态路由 Vue3中的路由使用的是Vue Router库&#xff0c;它是一个官方提供的用于实现应用程序导航的工具。Vue Router在Vue.js的核心库上提供了路由的功能&#xff0c;使得我们可以在单页应用中实现页面的切换、…...

Mysql四种事务隔离级别(简易理解)

读未提交&#xff1a;简单理解就是读到没有提交事务的执行结果&#xff1b;读已提交&#xff1a;简单理解就是只能读到已经提交的事务执行结果&#xff1b;可重复读&#xff1a;简单理解就是确保并发读取数据库时&#xff0c;读到的数据一致&#xff0c;这是mysql默认隔离级别&…...

react中使用redux最简单最方便的方式,配合rematch简化操作,5分钟学会

react中使用状态管理的方式也很多&#xff0c;比如redux和mobx等&#xff0c;今天这一片就讲一下redux的入门到熟练使用&#xff0c;主要是要理解它redux的组成有哪些&#xff0c;到怎么创建&#xff0c;和组建中怎么使用三个问题。这里先放上官网文档&#xff0c;不理解的地方…...

vmware安装中标麒麟高级服务器操作系统软件 V7.0操作系统

vmware安装中标麒麟高级服务器操作系统软件 V7.0操作系统 1、下载中标麒麟高级服务器操作系统软件 V7.0镜像2、安装中标麒麟高级服务器操作系统软件 V7.0操作系统 1、下载中标麒麟高级服务器操作系统软件 V7.0镜像 官方提供使用通道 访问官网 链接: https://www.kylinos.cn/ 下…...

OpenCV | 霍夫变换:以车道线检测为例

霍夫变换 霍夫变换只能灰度图&#xff0c;彩色图会报错 lines cv2.HoughLinesP(edge_img,1,np.pi/180,15,minLineLength40,maxLineGap20) 参数1&#xff1a;要检测的图片矩阵参数2&#xff1a;距离r的精度&#xff0c;值越大&#xff0c;考虑越多的线参数3&#xff1a;距离…...

【C#与Redis】--目录

1. 介绍 2. Redis 数据结构 3. Redis 命令 3.1 基本命令 3.2 字符串命令 3.3 哈希命令 3.4 列表命令 3.5 集合命令 3.6 有序集合命令 4. C# 操作 Redis 4.1 使用 Redis 库 4.2 连接 Redis 服务器 4.3 操作 Redis 数据结构 4.5 执行 Redis 命令 5. 高级主题 5.1 Redis 事…...

html旋转相册

一、实验题目 做一个旋转的3d相册&#xff0c;当鼠标停留在相册时&#xff0c;相册向四面散开 二、实验代码 <!DOCTYPE html> <html lang"zh"><head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" con…...

Plantuml之对象图语法介绍(十九)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 优质专栏&#xff1a;多媒…...

深度学习(八):bert理解之transformer

1.主要结构 transformer 是一种深度学习模型&#xff0c;主要用于处理序列数据&#xff0c;如自然语言处理任务。它在 2017 年由 Vaswani 等人在论文 “Attention is All You Need” 中提出。 Transformer 的主要特点是它完全放弃了传统的循环神经网络&#xff08;RNN&#x…...

R语言中的函数28:Reduce(), Filter(), Find(), Map(), Negate(), Position()

文章目录 介绍Reduce()实例 Filter()实例 Find()实例 Map()实例 Negate()实例 Position()实例 介绍 R语言中的Reduce(), Filter(), Find(), Map(), Negate(), Position()是base包中的一些高级函数。随后&#xff0c;很多包也给这些函数提供了更多的扩展。 Reduce() 该函数根…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度​

一、引言&#xff1a;多云环境的技术复杂性本质​​ 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时&#xff0c;​​基础设施的技术债呈现指数级积累​​。网络连接、身份认证、成本管理这三大核心挑战相互嵌套&#xff1a;跨云网络构建数据…...

Java 语言特性(面试系列2)

一、SQL 基础 1. 复杂查询 &#xff08;1&#xff09;连接查询&#xff08;JOIN&#xff09; 内连接&#xff08;INNER JOIN&#xff09;&#xff1a;返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...

【Linux】C语言执行shell指令

在C语言中执行Shell指令 在C语言中&#xff0c;有几种方法可以执行Shell指令&#xff1a; 1. 使用system()函数 这是最简单的方法&#xff0c;包含在stdlib.h头文件中&#xff1a; #include <stdlib.h>int main() {system("ls -l"); // 执行ls -l命令retu…...

五年级数学知识边界总结思考-下册

目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解&#xff1a;由来、作用与意义**一、知识点核心内容****二、知识点的由来&#xff1a;从生活实践到数学抽象****三、知识的作用&#xff1a;解决实际问题的工具****四、学习的意义&#xff1a;培养核心素养…...

P3 QT项目----记事本(3.8)

3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...

AGain DB和倍数增益的关系

我在设置一款索尼CMOS芯片时&#xff0c;Again增益0db变化为6DB&#xff0c;画面的变化只有2倍DN的增益&#xff0c;比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析&#xff1a; 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...

关于easyexcel动态下拉选问题处理

前些日子突然碰到一个问题&#xff0c;说是客户的导入文件模版想支持部分导入内容的下拉选&#xff0c;于是我就找了easyexcel官网寻找解决方案&#xff0c;并没有找到合适的方案&#xff0c;没办法只能自己动手并分享出来&#xff0c;针对Java生成Excel下拉菜单时因选项过多导…...

Kafka主题运维全指南:从基础配置到故障处理

#作者&#xff1a;张桐瑞 文章目录 主题日常管理1. 修改主题分区。2. 修改主题级别参数。3. 变更副本数。4. 修改主题限速。5.主题分区迁移。6. 常见主题错误处理常见错误1&#xff1a;主题删除失败。常见错误2&#xff1a;__consumer_offsets占用太多的磁盘。 主题日常管理 …...

前端中slice和splic的区别

1. slice slice 用于从数组中提取一部分元素&#xff0c;返回一个新的数组。 特点&#xff1a; 不修改原数组&#xff1a;slice 不会改变原数组&#xff0c;而是返回一个新的数组。提取数组的部分&#xff1a;slice 会根据指定的开始索引和结束索引提取数组的一部分。不包含…...

Docker拉取MySQL后数据库连接失败的解决方案

在使用Docker部署MySQL时&#xff0c;拉取并启动容器后&#xff0c;有时可能会遇到数据库连接失败的问题。这种问题可能由多种原因导致&#xff0c;包括配置错误、网络设置问题、权限问题等。本文将分析可能的原因&#xff0c;并提供解决方案。 一、确认MySQL容器的运行状态 …...