Flink 客户端操作命令及可视化工具
Flink
提供了丰富的客户端操作来提交任务和与任务进行交互。下面主要从Flink
命令行、Scala Shell
、SQL Client
、Restful API
和 Web
五个方面进行整理。
在Flink
安装目录的bin
目录下可以看到flink
,start-scala-shell.sh
和sql-client.sh
等文件,这些都是客户端操作的入口。
flink 常见操作:可以通过 -help 查看帮助
run 运行任务
-d
:以分离模式运行作业
-c
:如果没有在jar
包中指定入口类,则需要在这里通过这个参数指定;
-m
:指定需要连接的jobmanager
(主节点)地址,使用这个参数可以指定一个不同于配置文件中的jobmanager
,可以说是yarn
集群名称;
-p
:指定程序的并行度。可以覆盖配置文件中的默认值;
-s
:保存点savepoint
的路径以还原作业来自(例如hdfs:///flink/savepoint-1537
);
[root@hadoop1 flink-1.10.1]# bin/flink run -d examples/streaming/TopSpeedWindowing.jar
Executing TopSpeedWindowing example with default input data set.
Use --input to specify file input.
Printing result to stdout. Use --output to specify output path.
Job has been submitted with JobID dce7b69ad15e8756766967c46122736f
就可以看到我们提交的JobManager
,默认是一个并发。
点进去就可以看到详细的信息
点击左侧TaskManager —Stdout
能看到具体输出的日志信息。
或者查看TaskManager
节点的log
目录下的*.out
文件,也能看到具体的输出信息。
list 查看任务列表
-m
:jobmanager<arg>
作业管理器(主)的地址连接。
[root@hadoop1 flink-1.10.1]# bin/flink list -m 127.0.0.1:8081
Waiting for response...
------------------ Running/Restarting Jobs -------------------
09.07.2020 16:44:09 : dce7b69ad15e8756766967c46122736f : CarTopSpeedWindowingExample (RUNNING)
--------------------------------------------------------------
No scheduled jobs.
Stop 停止任务
需要指定jobmanager
的ip:prot
和jobId
。如下报错可知,一个job
能够被stop
要求所有的source
都是可以stoppable
的,即实现了 StoppableFunction
接口。
[root@hadoop1 flink-1.10.1]# bin/flink stop -m 127.0.0.1:8081 dce7b69ad15e8756766967c46122736f
Suspending job "dce7b69ad15e8756766967c46122736f" with a savepoint.------------------------------------------------------------The program finished with the following exception:org.apache.flink.util.FlinkException: Could not stop with a savepoint job "dce7b69ad15e8756766967c46122736f".at org.apache.flink.client.cli.CliFrontend.lambda$stop$5(CliFrontend.java:458)
StoppableFunction
接口如下,属于优雅停止任务。
/*** @Description 需要 stoppabel 的函数必须实现此接口,例如流式任务 source** stop() 方法在任务收到 stop信号的时候调用* source 在接收到这个信号后,必须停止发送新的数据优雅的停止。* @Date 2020/7/9 17:26*/@PublicEvolvingpublic interface StoppableFunction {/*** 停止 source,与 cancel() 不同的是,这是一个让 source优雅停止的请求。* 等待中的数据可以继续发送出去,不需要立即停止*/void stop();
}
Cancel 取消任务
如果在conf/flink-conf.yaml
里面配置state.savepoints.dir
,会保存savepoint
,否则不会保存savepoint
。(重启)
state.savepoints.dir: file:///tmp/savepoint
执行 Cancel
命令 取消任务
[root@hadoop1 flink-1.10.1]# bin/flink cancel -m 127.0.0.1:8081 -s e8ce0d111262c52bf8228d5722742d47
DEPRECATION WARNING: Cancelling a job with savepoint is deprecated. Use "stop" instead.
Cancelling job e8ce0d111262c52bf8228d5722742d47 with savepoint to default savepoint directory.
Cancelled job e8ce0d111262c52bf8228d5722742d47. Savepoint stored in file:/tmp/savepoint/savepoint-e8ce0d-f7fa96a085d8.
也可以在停止的时候显示指定savepoint
目录
1 [root@hadoop1 flink-1.10.1]# bin/flink cancel -m 127.0.0.1:8081 -s /tmp/savepoint f58bb4c49ee5580ab5f27fdb24083353
DEPRECATION WARNING: Cancelling a job with savepoint is deprecated. Use "stop" instead.
Cancelling job f58bb4c49ee5580ab5f27fdb24083353 with savepoint to /tmp/savepoint.
Cancelled job f58bb4c49ee5580ab5f27fdb24083353. Savepoint stored in file:/tmp/savepoint/savepoint-f58bb4-127b7e84910e.
取消和停止(流作业)的区别如下:
● cancel()
调用, 立即调用作业算子的cancel()
方法,以尽快取消它们。如果算子在接到cancel()
调用后没有停止,Flink
将开始定期中断算子线程的执行,直到所有算子停止为止。
● stop()
调用 ,是更优雅的停止正在运行流作业的方式。stop()
仅适用于source
实现了StoppableFunction
接口的作业。当用户请求停止作业时,作业的所有source
都将接收stop()
方法调用。直到所有source
正常关闭时,作业才会正常结束。这种方式,使 作业正常处理完所有作业。
触发 savepoint
当需要生成savepoint
文件时,需要手动触发savepoint
。如下,需要指定正在运行的 JobID 和生成文件的存放目录。同时,我们也可以看到它会返回给用户存放的savepoint
的文件名称等信息。
[root@hadoop1 flink-1.10.1]# bin/flink run -d examples/streaming/TopSpeedWindowing.jar Executing TopSpeedWindowing example with default input data set.Use --input to specify file input.Printing result to stdout. Use --output to specify output path.Job has been submitted with JobID 216c427d63e3754eb757d2cc268a448d[root@hadoop1 flink-1.10.1]# bin/flink savepoint -m 127.0.0.1:8081 216c427d63e3754eb757d2cc268a448d /tmp/savepoint/Triggering savepoint for job 216c427d63e3754eb757d2cc268a448d.Waiting for response...Savepoint completed. Path: file:/tmp/savepoint/savepoint-216c42-154a34cf6bfdYou can resume your program from this savepoint with the run command.
savepoint
和checkpoint
的区别:
● checkpoint
是增量做的,每次的时间较短,数据量较小,只要在程序里面启用后会自动触发,用户无须感知;savepoint
是全量做的,每次的时间较长,数据量较大,需要用户主动去触发。
● checkpoint
是作业failover
的时候自动使用,不需要用户指定。savepoint
一般用于程序的版本更新,bug
修复,A/B Test
等场景,需要用户指定。
从指定 savepoint 中启动
[root@hadoop1 flink-1.10.1]# bin/flink run -d -s /tmp/savepoint/savepoint-f58bb4-127b7e84910e/ examples/streaming/TopSpeedWindowing.jar
Executing TopSpeedWindowing example with default input data set.
Use --input to specify file input.
Printing result to stdout. Use --output to specify output path.
Job has been submitted with JobID 1a5c5ce279e0e4bd8609f541b37652e2
查看JobManager
的日志能够看到Reset the checkpoint ID
为我们指定的savepoint
文件中的ID
modify 修改任务并行度
这里修改master
的conf/flink-conf.yaml
将task slot
数修改为4
。并通过xsync
分发到 两个slave
节点上。
taskmanager.numberOfTaskSlots: 4
修改参数后需要重启集群生效:关闭/启动集群
[root@hadoop1 flink-1.10.1]# bin/stop-cluster.sh && bin/start-cluster.sh
Stopping taskexecutor daemon (pid: 8236) on host hadoop2.
Stopping taskexecutor daemon (pid: 8141) on host hadoop3.
Stopping standalonesession daemon (pid: 22633) on host hadoop1.
Starting cluster.
Starting standalonesession daemon on host hadoop1.
Starting taskexecutor daemon on host hadoop2.
Starting taskexecutor daemon on host hadoop3.
启动任务
[root@hadoop1 flink-1.10.1]# bin/flink run -d examples/streaming/TopSpeedWindowing.jar
Executing TopSpeedWindowing example with default input data set.
Use --input to specify file input.
Printing result to stdout. Use --output to specify output path.
Job has been submitted with JobID 2e833a438da7d8052f14d5433910515a
从页面上能看到Task Slots
总计变为了8
,运行的Slot
为1
,剩余Slot
数量为7
。
这时候默认的并行度是1
Flink1.0
版本命令行flink modify
已经没有这个行为了,被移除了。。。Flink1.7
上是可以运行的。
[root@hadoop1 flink-1.10.1]# bin/flink modify -p 4 cc22cc3d09f5d65651d637be6fb0a1c3
"modify" is not a valid action.
Info 显示程序的执行计划
[root@hadoop1 flink-1.10.1]# bin/flink info examples/streaming/TopSpeedWindowing.jar
----------------------- Execution Plan -----------------------
{"nodes":[{"id":1,"type":"Source: Custom Source","pact":"Data Source","contents":"Source: Custom Source","parallelism":1},{"id":2,"type":"Timestamps/Watermarks","pact":"Operator","contents":"Timestamps/Watermarks","parallelism":1,"predecessors":[{"id":1,"ship_strategy":"FORWARD","side":"second"}]},{"id":4,"type":"Window(GlobalWindows(), DeltaTrigger, TimeEvictor, ComparableAggregator, PassThroughWindowFunction)","pact":"Operator","contents":"Window(GlobalWindows(), DeltaTrigger, TimeEvictor, ComparableAggregator, PassThroughWindowFunction)","parallelism":1,"predecessors":[{"id":2,"ship_strategy":"HASH","side":"second"}]},{"id":5,"type":"Sink: Print to Std. Out","pact":"Data Sink","contents":"Sink: Print to Std. Out","parallelism":1,"predecessors":[{"id":4,"ship_strategy":"FORWARD","side":"second"}]}]}
--------------------------------------------------------------
拷贝输出的json
内容,粘贴到这个网站:http://flink.apache.org/visualizer/
可以生成类似如下的执行图。
可以与实际运行的物理执行计划进行对比。
SQL Client Beta
进入 Flink SQL
[root@hadoop1 flink-1.10.1]# bin/sql-client.sh embedded
Select
查询,按Q
退出如下界面;
Flink SQL> select 'hello word';SQL Query Result (Table)Table program finished. Page: Last of 1 Updated: 16:37:04.649EXPR$0hello wordQ Quit + Inc Refresh G Goto Page N Next Page O Open Row
R Refresh - Dec Refresh L Last Page P Prev Page
打开http://hadoop1:8081
能看到这条select
语句产生的查询任务已经结束了。这个查询采用的是读取固定数据集的Custom Source
,输出用的是Stream Collect Sink
,且只输出一条结果。
explain 查看 SQL 的执行计划。
Flink SQL> explain SELECT name, COUNT(*) AS cnt FROM (VALUES ('Bob'), ('Alice'), ('Greg'), ('Bob')) AS NameTable(name) GROUP BY name;
== Abstract Syntax Tree == //抽象语法树
LogicalAggregate(group=[{0}], cnt=[COUNT()])
+- LogicalValues(type=[RecordType(VARCHAR(5) name)], tuples=[[{ _UTF-16LE'Bob' }, { _UTF-16LE'Alice' }, { _UTF-16LE'Greg' }, { _UTF-16LE'Bob' }]])== Optimized Logical Plan == //优化后的逻辑执行计划
GroupAggregate(groupBy=[name], select=[name, COUNT(*) AS cnt])
+- Exchange(distribution=[hash[name]])+- Values(type=[RecordType(VARCHAR(5) name)], tuples=[[{ _UTF-16LE'Bob' }, { _UTF-16LE'Alice' }, { _UTF-16LE'Greg' }, { _UTF-16LE'Bob' }]])== Physical Execution Plan == //物理执行计划
Stage 13 : Data Sourcecontent : Source: Values(tuples=[[{ _UTF-16LE'Bob' }, { _UTF-16LE'Alice' }, { _UTF-16LE'Greg' }, { _UTF-16LE'Bob' }]])Stage 15 : Operatorcontent : GroupAggregate(groupBy=[name], select=[name, COUNT(*) AS cnt])ship_strategy : HASH
结果展示
SQL Client
支持两种模式来维护并展示查询结果:
table mode
在内存中物化查询结果,并以分页table
形式展示。用户可以通过以下命令启用table mode
:例如如下案例;
Flink SQL> SET execution.result-mode=table;
[INFO] Session property has been set.Flink SQL> SELECT name, COUNT(*) AS cnt FROM (VALUES ('Bob'), ('Alice'), ('Greg'), ('Bob')) AS NameTable(name) GROUP BY name;SQL Query Result (Table)Table program finished. Page: Last of 1 Updated: 16:55:08.589name cntAlice 1Greg 1Bob 2Q Quit + Inc Refresh G Goto Page N Next Page O Open Row
R Refresh - Dec Refresh L Last Page P Prev Page
changelog mode
不会物化查询结果,而是直接对continuous query
产生的添加和撤回retractions
结果进行展示:如下案例中的-表示撤回消息
Flink SQL> SET execution.result-mode=changelog;
[INFO] Session property has been set.Flink SQL> SELECT name, COUNT(*) AS cnt FROM (VALUES ('Bob'), ('Alice'), ('Greg'), ('Bob')) AS NameTable(name) GROUP BY name;SQL Query Result (Changelog)Table program finished. Updated: 16:58:05.777+/- name cnt+ Bob 1+ Alice 1+ Greg 1- Bob 1+ Bob 2Q Quit + Inc Refresh O Open Row
R Refresh - Dec Refresh
Environment Files
CREATE TABLE
创建表DDL
语句:
Flink SQL> CREATE TABLE pvuv_sink (
> dt VARCHAR,
> pv BIGINT,
> uv BIGINT
> ) ;
[INFO] Table has been created.
SHOW TABLES
查看所有表名
Flink SQL> show tables;
pvuv_sink
DESCRIBE 表名
查看表的详细信息;
Flink SQL> describe pvuv_sink;
root|-- dt: STRING|-- pv: BIGINT|-- uv: BIGINT
插入等操作均与关系型数据库操作语句一样,省略N
个操作
Restful API
接下来我们演示如何通过rest api
来提交jar
包和执行任务。
通过Show Plan
可以看到执行图
提交之后的操作,取消的话点击页面的Cancel Job
相关文章:

Flink 客户端操作命令及可视化工具
Flink提供了丰富的客户端操作来提交任务和与任务进行交互。下面主要从Flink命令行、Scala Shell、SQL Client、Restful API和 Web五个方面进行整理。 在Flink安装目录的bin目录下可以看到flink,start-scala-shell.sh和sql-client.sh等文件,这些都是客户…...

csrf自动化检测调研
https://github.com/pillarjs/understanding-csrf/blob/master/README_zh.md CSRF 攻击者在钓鱼站点,可以通过创建一个AJAX按钮或者表单来针对你的网站创建一个请求: <form action"https://my.site.com/me/something-destructive" metho…...
记录一个Python鼠标自动模块用法和selenium加载网页插件的设置
写爬虫,或者网页自动化,让程序自动完成一些重复性的枯燥的网页操作,是最常见的需求。能够解放双手,空出时间看看手机,或者学习别的东西,甚至还能帮朋友亲戚减轻工作量。 然而,网页自动化代码编写…...

【数据库系统概论】第3章-关系数据库标准语言SQL(1)
文章目录 3.1 SQL概述3.2 学生-课程数据库3.3 数据定义3.3.1 数据库定义3.3.2 模式的定义3.3.3 基本表的定义3.3.4 索引的建立与删除3.3.5 数据字典 3.1 SQL概述 动词 分类 三级模式 3.2 学生-课程数据库 3.3 数据定义 3.3.1 数据库定义 创建数据库 tips:[ ]表…...

【Python】基于flaskMVT架构与session实现博客前台登录登出功能
目录 一、MVT说明 1.Model层 2.View层 3.Template层 二、功能说明 三、代码框架展示 四、具体代码实现 models.py 登录界面前端代码 博客界面前端代码(profile.html) main.py 一、MVT说明 MVT架构是Model-View-Template的缩写,是…...

为什么有的开关电源需要加自举电容?
一、什么是自举电路? 1.1 自举的概念 首先,自举电路也叫升压电路,是利用自举升压二极管,自举升压电容等电子元件,使电容放电电压和电源电压叠加,从而使电压升高。有的电路升高的电压能达到数倍电源电压。…...

【MCAL】TC397+EB-treso之MCU配置实战 - 芯片时钟
本篇文章介绍了在TC397平台使用EB-treso对MCU驱动模块进行配置的实战过程,主要介绍了后续基本每个外设模块都要涉及的芯片时钟部分,帮助读者了解TC397芯片的时钟树结构,在后续计算配置不同外设模块诸如通信速率,定时器周期等&…...

高级人工智能之群体智能:蚁群算法
群体智能 鸟群: 鱼群: 1.基本介绍 蚁群算法(Ant Colony Optimization, ACO)是一种模拟自然界蚂蚁觅食行为的优化算法。它通常用于解决路径优化问题,如旅行商问题(TSP)。 蚁群算法的基本步骤…...
【SpringBoot应用篇】【AOP+注解】SpringBoot+SpEL表达式基于注解实现权限控制
【SpringBoot应用篇】【AOP注解】SpringBootSpEL表达式基于注解实现权限控制 Spring SpEL基本表达式类相关表达式表达式模板 SpEL表达式实现权限控制PreAuthAuthFunPreAuthAspectUserControllerSpelParserUtils Spring SpEL Spring 表达式语言 SpEL 是一种非常强大的表达式语言…...

Java研学-HTTP 协议
一 概述 1 概念和作用 概念:HTTP 是 HyperText Transfer Protocol (超文本传输协议)的简写,它是 TCP/IP 协议之上的一个应用层协议。简单理解就是 HTTP 协议底层是对 TCP/IP 协议的封装。 作用:用于规定浏览器和服务器之间数据传输的格式…...

差生文具多之(二): perf
栈回溯和符号解析是使用 perf 的两大阻力,本文以应用程序 fio 的观测为例子,提供一些处理它们的经验法则,希望帮助大家无痛使用 perf。 前言 系统级性能优化通常包括两个阶段:性能剖析和代码优化: 性能剖析的目标是寻…...

【SPI和API有什么区别】
✅什么是SPI,和API有什么区别 ✅典型解析🟢拓展知识仓🟢如何定义一个SPI🟢SPI的实现原理 ✅SPI的应用场景SpringDubbo ✅典型解析 Java 中区分 API和 SPI,通俗的进: API和 SPI 都是相对的概念,他们的差别只…...

Day67力扣打卡
打卡记录 美丽塔 II(前缀和 单调栈) 链接 class Solution:def maximumSumOfHeights(self, maxHeights: List[int]) -> int:n len(maxHeights)stack collections.deque()pre, suf [0] * n, [0] * nfor i in range(n):while stack and maxHeights…...

什么是网站监控?
网站监控是跟踪网站的可用性和性能,以最小化宕机时间,优化性能并确保顺畅的用户体验。维护网站正常运行对于任何企业来说都是至关重要的,因而对大多数业务来说,网站应用监控都是一个严峻的挑战。Applications Manager网站应用监控…...

游戏软件提示d3dcompiler_43.dll的五个解决方法,亲测靠谱
在使用电脑进行工作,玩游戏的时候,我们常常会遇到一些错误提示,其中之一就是“D3DCompiler_43.dll丢失”的提示。D3DCompiler_43.dll是一个非常重要的动态链接库文件。它是由DirectX SDK提供的,用于编译和优化DirectX着色器代码的…...

python使用opencv提取视频中的每一帧、最后一帧,并存储成图片
提取视频每一帧存储图片 最近在搞视频检测问题,在用到将视频分帧保存为图片时,图片可以保存,但是会出现(-215:Assertion failed) !_img.empty() in function cv::imwrite问题而不能正常运行,在检查代码、检查路径等措施均无果后&…...
说说对React refs 的理解?应用场景?
先了解,是什么? React 中的 Refs提供了一种方式,允许我们访问 DOM节点或在 render方法中创建的 React元素。 本质为ReactDOM.render()返回的组件实例,如果是渲染组件则返回的是组件实例,如果渲染dom则返回的是具体的do…...
Pytorch 读取t7文件
Pytorch 1.0以上可以使用: import torchfileth_path r"./path/xx.t7" data torchfile.load(th_path)print(data.shape)若data的尺寸为0,则将torch版本降为0.4.1,并使用以下函数: from torch.utils.serialization im…...

【YOLOV8预测篇】使用Ultralytics YOLO进行检测、分割、姿态估计和分类实践
目录 一 安装Ultralytics 二 使用预训练的YOLOv8n检测模型 三 使用预训练的YOLOv8n-seg分割模型 四 使用预训练的YOLOv8n-pose姿态模型 五 使用预训练的YOLOv8n-cls分类模型 <...

[Linux] MySQL数据库之索引
一、索引的相关知识 1.1 索引的简介 索引是一个排序列表,包含索引值和包含该值的数据行的物理地址(类似于 c 语言链表,通过指针指向数据记录的内存地址)。 使用索引后可以不用扫描全表来定位某行的数据,而是先通过索…...

python打卡day49
知识点回顾: 通道注意力模块复习空间注意力模块CBAM的定义 作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...
基于Uniapp开发HarmonyOS 5.0旅游应用技术实践
一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架,支持"一次开发,多端部署",可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务,为旅游应用带来…...

linux arm系统烧录
1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 (忘了有没有这步了 估计有) 刷机程序 和 镜像 就不提供了。要刷的时…...
【Go】3、Go语言进阶与依赖管理
前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课,做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程,它的核心机制是 Goroutine 协程、Channel 通道,并基于CSP(Communicating Sequential Processes࿰…...

DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI
前一阵子在百度 AI 开发者大会上,看到基于小智 AI DIY 玩具的演示,感觉有点意思,想着自己也来试试。 如果只是想烧录现成的固件,乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外,还提供了基于网页版的 ESP LA…...

分布式增量爬虫实现方案
之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面,避免重复抓取,以节省资源和时间。 在分布式环境下,增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路:将增量判…...
ip子接口配置及删除
配置永久生效的子接口,2个IP 都可以登录你这一台服务器。重启不失效。 永久的 [应用] vi /etc/sysconfig/network-scripts/ifcfg-eth0修改文件内内容 TYPE"Ethernet" BOOTPROTO"none" NAME"eth0" DEVICE"eth0" ONBOOT&q…...
Angular微前端架构:Module Federation + ngx-build-plus (Webpack)
以下是一个完整的 Angular 微前端示例,其中使用的是 Module Federation 和 npx-build-plus 实现了主应用(Shell)与子应用(Remote)的集成。 🛠️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...

c++第七天 继承与派生2
这一篇文章主要内容是 派生类构造函数与析构函数 在派生类中重写基类成员 以及多继承 第一部分:派生类构造函数与析构函数 当创建一个派生类对象时,基类成员是如何初始化的? 1.当派生类对象创建的时候,基类成员的初始化顺序 …...

【PX4飞控】mavros gps相关话题分析,经纬度海拔获取方法,卫星数锁定状态获取方法
使用 ROS1-Noetic 和 mavros v1.20.1, 携带经纬度海拔的话题主要有三个: /mavros/global_position/raw/fix/mavros/gpsstatus/gps1/raw/mavros/global_position/global 查看 mavros 源码,来分析他们的发布过程。发现前两个话题都对应了同一…...