当前位置: 首页 > news >正文

【经典LeetCode算法题目专栏分类】【第8期】滑动窗口:最小覆盖子串、字符串排列、找所有字母异位词、 最长无重复子串

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能AI、python、计算机视觉相关分享研究。
更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】
二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】

一般应用场景

数组,字符串子串等问题。

通用模板

双指针大致逻辑如下:

left = 0

right  = 0

while  right < len(s):

    # 右指针右移增大窗口

    window.add(s[right])

    right  += 1

    while isvalid:

        # 当满足某种条件时开始从左边收缩窗口

        window.remove(s[left])

        left += 1

代码模板:

def slidingWindow(s, t):

    from collections import defaultdict

    # defaultdict(int)对于不存在的键默认值为0,

    # 可以直接进行window[c] += 1的操作,免去了判断过程

    window = defaultdict(int)

    needs  = defaultdict(int)

    left = 0

    right = 0

    for c in t:

        needs[c] += 1

    while right < len(s):

        # c1为移入窗口的字符

        c1 = s[right]

        # 窗口右移

        right += 1

        # 进行窗口内数据的相关操作

        # TODO

        # 判断左侧窗口是否要收缩

        while window needs shrink:

            # c2为将要移出窗口的字符

            c2 = s[left]

            # 左指针右移,收缩窗口

            left += 1

            # 进行窗口内数据的相关操作

            # TODO

相关Leetcode题目

  1. 最小覆盖子串

class Solution:

    def minWindow(self, s: str, t: str) -> str:

        from collections import defaultdict

        needs = defaultdict(int)

        window = defaultdict(int)

        left = 0

        right = 0

        count = 0 #window中满足条件的字符数

        start = 0 #记录最小子串的起始位置

        min_len = float('inf') #记录最小子串的长度

        for c in t:

            needs[c] += 1

        while right < len(s):

            c1 = s[right]

            right += 1

            if  c1 in needs:

                window[c1] += 1

                if window[c1] == needs[c1]:

                    count += 1

            while count == len(needs):

                # 更新最小覆盖子串

                if right - left < min_len:

                    start = left

                    min_len = right - left

                c2 = s[left]

                left += 1

                if c2 in needs:

                    window[c2] -= 1

                    if window[c2] < needs[c2]:

                        count -= 1

        if min_len == float('inf'):

            return ''

        else:

            return s[start:start+min_len]

  1. 字符串排列

class Solution:

    def checkInclusion(self, s1: str, s2: str) -> bool:

        from collections  import defaultdict

        needs = defaultdict(int)

        for c in s1:

            needs[c] += 1

        window = defaultdict(int)

        left = 0

        right = 0

        count = 0

        while right < len(s2):

            c1 = s2[right]

            right += 1

            if c1 in needs:

                window[c1] += 1

                if window[c1] == needs[c1]:

                    count += 1

            while count == len(needs):

                if right - left == len(s1):

                    # 如果子串长度与s1相等则包含

                    return True

                c2 = s2[left]

                if c2 in needs:

                    window[c2] -= 1

                    if window[c2] < needs[c2]:

                        count -= 1

                left += 1

        return False

  1. 找所有字母异位词

class Solution:

    def findAnagrams(self, s: str, p: str) -> List[int]:

        from collections import defaultdict

        needs = defaultdict(int)

        window = defaultdict(int)

        left = 0

        right = 0

        count = 0

        res = []

        for c in p:

            needs[c] += 1

        while right < len(s):

            c1 = s[right]

            if c1 in needs:

                window[c1] += 1

                if window[c1] == needs[c1]:

                    count += 1

            right += 1

            while count == len(needs):

                if right - left == len(p):

                    res.append(left)

                c2 = s[left]

                if c2 in needs:

                    window[c2] -= 1

                    if window[c2] < needs[c2]:

                        count -= 1

                left += 1

        return res

  1. 最长无重复子串

class Solution:

    def lengthOfLongestSubstring(self, s: str) -> int:

        max_len = 0

        left = 0

        right = 0

        n = len(s)

        from collections import defaultdict

        window = defaultdict(int)

        while right < n:

            c1 = s[right]

            right += 1

            window[c1] += 1

            while window[c1] > 1:

                c2 = s[left]

                left += 1

                window[c2] -= 1

            max_len = max(max_len, right - left)

        return max_len

关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

觉得不错的小伙伴,感谢点赞、关注加收藏哦!

欢迎关注下方GZH:阿旭算法与机器学习,共同学习交流~

相关文章:

【经典LeetCode算法题目专栏分类】【第8期】滑动窗口:最小覆盖子串、字符串排列、找所有字母异位词、 最长无重复子串

《博主简介》 小伙伴们好&#xff0c;我是阿旭。专注于人工智能AI、python、计算机视觉相关分享研究。 ✌更多学习资源&#xff0c;可关注公-仲-hao:【阿旭算法与机器学习】&#xff0c;共同学习交流~ &#x1f44d;感谢小伙伴们点赞、关注&#xff01; 《------往期经典推荐--…...

C#和.Net常见问题记录

什么是.NET框架&#xff0c;.NET框架与C#(C Sharp)是什么关系&#xff1f; .NET框架是由Microsoft设计和维护的软件开发框架&#xff0c;.NET框架提供了C#(编程语言)开发的所有基础设施和支持。通过使用C#和.NET框架&#xff0c;开发者可以轻松地开发高质量、高效率的应…...

FAQ:Container Classes篇

1、Why should I use container classes rather than simple arrays?&#xff08;为什么应该使用容器类而不是简单的数组&#xff1f;&#xff09; In terms of time and space, a contiguous array of any kind is just about the optimal construct for accessing a sequen…...

每日一题(LeetCode)----栈和队列--滑动窗口最大值

每日一题(LeetCode)----栈和队列–滑动窗口最大值 1.题目&#xff08;239. 滑动窗口最大值&#xff09; 给你一个整数数组 nums&#xff0c;有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k 个数字。滑动窗口每次只向右移动一位。 …...

13.bash shell中的if-then语句

文章目录 shell中的流控制if语句if语句if-then语句if-then-else 语句 test命令数值比较字符串比较文件比较case语句 欢迎访问个人网络日志&#x1f339;&#x1f339;知行空间&#x1f339;&#x1f339; shell中的流控制if语句 简单的脚本可以只包含顺序执行的命令&#xff0…...

深入了解 Python 的 import 语句

在 Python 中&#xff0c;import 语句是一个关键的功能&#xff0c;用于在程序中引入模块和包。本文将深入讨论 import 语句的各种用法、注意事项以及一些高级技巧&#xff0c;以帮助你更好地理解和使用这一功能。 概念介绍 package 通常对应一个文件夹&#xff0c;下面可以有…...

接口测试 — 11.logging日志模块处理流程

1、概括理解 了解了四大组件的基本定义之后&#xff0c;我们通过图示的方式来理解下信息的传递过程&#xff1a; 也就是获取的日志信息&#xff0c;进入到Logger日志器中&#xff0c;传递给处理器确定要输出到哪里&#xff0c;然后进行过滤器筛选&#xff0c;通过后再按照定义…...

Hago 的 Spark on ACK 实践

作者&#xff1a;华相 Hago 于 2018 年 4 月上线&#xff0c;是欢聚集团旗下的一款多人互动社交明星产品。Hago 融合优质的匹配能力和多样化的垂类场景&#xff0c;提供互动游戏、多人语音、视频直播、 3D 虚拟形象互动等多种社交玩法&#xff0c;致力于为用户打造高效、多样、…...

mac传输文件到windows

前言 由于mac系统与windows系统文件格式不同&#xff0c;通过U盘进行文件拷贝时&#xff0c;导致无法拷贝。官方解决方案如下&#xff0c;但是描述的比较模糊。看我的操作步骤即可。 https://support.apple.com/zh-cn/guide/mac-help/mchlp1657/12.0/mac/12.6 前提条件 mac与…...

trtc-electron-sdk的demo中添加更新功能以及出现的报错问题

1、官网demo下载地址 点击下载 按照官网demo说明文档进行安装和运行 2、添加electron-updater npm install electron-updater根据项目需求安装对应的版本&#xff0c;建议使用5.2.1 3、创建一个handleUpdater.js文件&#xff0c;和package.json同级 // const { ipcMain } …...

什么是流量攻击? 流量攻击怎么处理?

由于DDoS攻击往往采取合法的数据请求技术&#xff0c;再加上傀儡机器&#xff0c;造成DDoS攻击成为最难防御的网络攻击之一。据美国最新的安全损失调查报告&#xff0c;DDoS攻击所造成的经济损失已经跃居第一。 传统的网络设备和周边安全技术&#xff0c;例如防火墙和IDSs(Intr…...

【大数据】NiFi 的基本使用

NiFi 的基本使用 1.NiFi 的安装与使用1.1 NiFi 的安装1.2 各目录及主要文件 2.NiFi 的页面使用2.1 主页面介绍2.2 面板介绍 3.NiFi 的工作方式3.1 基本方式3.2 选择处理器3.3 组件状态3.4 组件的配置3.4.1 SETTINGS&#xff08;通用配置&#xff09;3.4.2 SCHEDULING&#xff0…...

5 分钟内搭建一个免费问答机器人:Milvus + LangChain

搭建一个好用、便宜又准确的问答机器人需要多长时间&#xff1f; 答案是 5 分钟。只需借助开源的 RAG 技术栈、LangChain 以及好用的向量数据库 Milvus。必须要强调的是&#xff0c;该问答机器人的成本很低&#xff0c;因为我们在召回、评估和开发迭代的过程中不需要调用大语言…...

WPF Border

在 WPF 中&#xff0c;Border 是一种常用的控件&#xff0c;用于给其他控件提供边框和背景效果。 要使用 Border 控件&#xff0c;您可以在 XAML 代码中添加以下代码&#xff1a; <Border BorderBrush"Black" BorderThickness"2" Background"Lig…...

基于博弈树的开源五子棋AI教程[4 静态棋盘评估]

引子 静态棋盘的评估是棋力的一个很重要的体现&#xff0c;一个优秀的基于博弈树搜索的AI往往有上千行工作量&#xff0c;本文没有做深入讨论&#xff0c;仅仅写了个引子用来抛砖引玉。 评估一般从两个角度入手&#xff0c;一个是子力&#xff0c;另一个是局势。 1 评估维度 …...

STL--排序与检索

题目 现有N个大理石&#xff0c;每个大理石上写了一个非负整数。首先把各数从小到大排序&#xff0c;然后回答Q个问题。每个问题是否有一个大理石写着某个整数x,如果是&#xff0c;还要回答哪个大理石写着x。排序后的大理石从左到右编写为1-N。&#xff08;样例中&#xff0c;…...

大数据处理与分析-Spark

导论 (基于Hadoop的MapReduce的优缺点&#xff09; MapReduce是一个分布式运算程序的编程框架&#xff0c;是用户开发“基于Hadoop的数据分析应用”的核心框架 MapReduce是一种用于处理大规模数据集的编程模型和计算框架。它将数据处理过程分为两个主要阶段&#xff1a;Map阶…...

虚拟机的下载、安装(模拟出服务器)

下载 vmware workstation&#xff08;收费的虚拟机&#xff09; 下载vbox 网址&#xff1a;Oracle VM VirtualBox&#xff08;免费的虚拟机&#xff09; 以下选择一个下载即可&#xff0c;建议下载vbox&#xff0c;因为是免费的。安装的时候默认下一步即可&#xff08;路径最好…...

K8S Pod Terminating/Unknown故障排查

一、pod异常出现现象 优雅终止周期(Graceful termination period): 当pod被删除时&#xff0c;会进入"Terminating"状态&#xff0c;等待容器优雅关闭。如果容器关闭所需时间超过默认期限(默认30秒)&#xff0c;则pod将保持在"Terminating"状态。 Finalize…...

labelme标注的json文件数据转成coco数据集格式(可处理目标框和实例分割)

这里主要是搬运一下能找到的 labelme标注的json文件数据转成coco数据集格式&#xff08;可处理目标框和实例分割&#xff09;的代码&#xff0c;以供需要时参考和提供相关帮助。 1、官方labelme实现 如下是labelme官方网址&#xff0c;提供了源代码&#xff0c;以及相关使用方…...

华为云AI开发平台ModelArts

华为云ModelArts&#xff1a;重塑AI开发流程的“智能引擎”与“创新加速器”&#xff01; 在人工智能浪潮席卷全球的2025年&#xff0c;企业拥抱AI的意愿空前高涨&#xff0c;但技术门槛高、流程复杂、资源投入巨大的现实&#xff0c;却让许多创新构想止步于实验室。数据科学家…...

调用支付宝接口响应40004 SYSTEM_ERROR问题排查

在对接支付宝API的时候&#xff0c;遇到了一些问题&#xff0c;记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器

一.自适应梯度算法Adagrad概述 Adagrad&#xff08;Adaptive Gradient Algorithm&#xff09;是一种自适应学习率的优化算法&#xff0c;由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率&#xff0c;适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

shell脚本--常见案例

1、自动备份文件或目录 2、批量重命名文件 3、查找并删除指定名称的文件&#xff1a; 4、批量删除文件 5、查找并替换文件内容 6、批量创建文件 7、创建文件夹并移动文件 8、在文件夹中查找文件...

什么是EULA和DPA

文章目录 EULA&#xff08;End User License Agreement&#xff09;DPA&#xff08;Data Protection Agreement&#xff09;一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA&#xff08;End User License Agreement&#xff09; 定义&#xff1a; EULA即…...

Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理

引言 Bitmap&#xff08;位图&#xff09;是Android应用内存占用的“头号杀手”。一张1080P&#xff08;1920x1080&#xff09;的图片以ARGB_8888格式加载时&#xff0c;内存占用高达8MB&#xff08;192010804字节&#xff09;。据统计&#xff0c;超过60%的应用OOM崩溃与Bitm…...

零基础在实践中学习网络安全-皮卡丘靶场(第九期-Unsafe Fileupload模块)(yakit方式)

本期内容并不是很难&#xff0c;相信大家会学的很愉快&#xff0c;当然对于有后端基础的朋友来说&#xff0c;本期内容更加容易了解&#xff0c;当然没有基础的也别担心&#xff0c;本期内容会详细解释有关内容 本期用到的软件&#xff1a;yakit&#xff08;因为经过之前好多期…...

BLEU评分:机器翻译质量评估的黄金标准

BLEU评分&#xff1a;机器翻译质量评估的黄金标准 1. 引言 在自然语言处理(NLP)领域&#xff0c;衡量一个机器翻译模型的性能至关重要。BLEU (Bilingual Evaluation Understudy) 作为一种自动化评估指标&#xff0c;自2002年由IBM的Kishore Papineni等人提出以来&#xff0c;…...

LangChain 中的文档加载器(Loader)与文本切分器(Splitter)详解《二》

&#x1f9e0; LangChain 中 TextSplitter 的使用详解&#xff1a;从基础到进阶&#xff08;附代码&#xff09; 一、前言 在处理大规模文本数据时&#xff0c;特别是在构建知识库或进行大模型训练与推理时&#xff0c;文本切分&#xff08;Text Splitting&#xff09; 是一个…...

Java 与 MySQL 性能优化:MySQL 慢 SQL 诊断与分析方法详解

文章目录 一、开启慢查询日志&#xff0c;定位耗时SQL1.1 查看慢查询日志是否开启1.2 临时开启慢查询日志1.3 永久开启慢查询日志1.4 分析慢查询日志 二、使用EXPLAIN分析SQL执行计划2.1 EXPLAIN的基本使用2.2 EXPLAIN分析案例2.3 根据EXPLAIN结果优化SQL 三、使用SHOW PROFILE…...