当前位置: 首页 > news >正文

智能优化算法应用:基于材料生成算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于材料生成算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于材料生成算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.材料生成算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用材料生成算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.材料生成算法

材料生成算法原理请参考:https://blog.csdn.net/u011835903/article/details/124221652
材料生成算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

材料生成算法参数如下:

%% 设定材料生成优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明材料生成算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

相关文章:

智能优化算法应用:基于材料生成算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于材料生成算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于材料生成算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.材料生成算法4.实验参数设定5.算法结果6.…...

【MySQL】:超详细MySQL完整安装和配置教程

🎥 屿小夏 : 个人主页 🔥个人专栏 : MySQL从入门到进阶 🌄 莫道桑榆晚,为霞尚满天! 文章目录 📑前言一. MySQL数据库1.1 版本1.2 下载1.3 安装1.4 客户端连接 🌤️全篇总…...

OpenAI亲授ChatGPT “屠龙术”!官方Prompt 工程指南来啦

应该如何形容 Prompt 工程呢?对于一个最开始使用 ChatGPT 的新人小白,面对据说参数量千亿万亿的庞然巨兽,Prompt 神秘的似乎像某种献祭:我扔进去几句话,等待聊天窗口后的“智慧生命”给我以神谕。 然而,上…...

最新ChatGPT商业运营网站程序源码,支持Midjourney绘画,GPT语音对话+DALL-E3文生图+文档对话总结

一、前言 SparkAi创作系统是基于ChatGPT进行开发的Ai智能问答系统和Midjourney绘画系统,支持OpenAI-GPT全模型国内AI全模型。本期针对源码系统整体测试下来非常完美,可以说SparkAi是目前国内一款的ChatGPT对接OpenAI软件系统。那么如何搭建部署AI创作Ch…...

经验 | IDEA常用快捷键

1、编辑(Editing) Ctrl Space 基本的代码完成(类、方法、属性) Ctrl Alt Space 快速导入任意类 Ctrl Shift Enter 语句完成 Ctrl P 参数信息(在方法中调用参数) Ctrl Q 快速查看文档 Shift F…...

spark中 write.csv时, 添加第一行的标题title

在 Spark 中使用 write.csv 写入 CSV 文件时,默认情况下是不会在文件中添加标题行的。但是,你可以通过设置 header 选项来控制是否包含标题行。 下面是一个示例: val data Seq((1, "John", 28),(2, "Alice", 22),(3, …...

HTML美化网页

使用CSS3美化的原因 用css美化页面文本,使页面漂亮、美观、吸引用户 可以更好的突出页面的主题内容,使用户第一眼可以看到页面主要内容 具有良好的用户体验 <span>标签 作用 能让某几个文字或者某个词语凸显出来 有效的传递页面信息用css美化页面文本&#xff0c;使页面漂…...

nn.LSTM个人记录

简介 nn.LSTM参数 torch.nn.lstm(input_size, "输入的嵌入向量维度&#xff0c;例如每个单词用50维向量表示&#xff0c;input_size就是50"hidden_size, "隐藏层节点数量,也是输出的嵌入向量维度"num_layers, "lstm 隐层的层数&#xff0c;默认…...

vr虚拟高压电器三维仿真展示更立体全面

VR工业虚拟仿真软件的应用价值主要体现在以下几个方面&#xff1a; 降低成本&#xff1a;通过VR技术进行产品设计和开发&#xff0c;可以在虚拟环境中进行&#xff0c;从而减少对物理样机的依赖&#xff0c;降低试错成本和时间。此外&#xff0c;利用VR技术构建的模拟场景使用方…...

轮廓平滑方法

目录 1. 形态学操作 2. 边缘平滑化 3. 轮廓近似 python 有回归线平滑 2D 轮廓 1. 形态学操作 利用形态学操作&#xff08;例如腐蚀、膨胀、开运算、闭运算等&#xff09;可以使分割边界更加平滑和连续。腐蚀可以消除小的不连续区域&#xff0c;膨胀可以填充空洞&#xff0…...

十大VSCODE 插件推荐2023

1、海鲸AI 插件链接&#xff1a;ChatGPT GPT-4 - 海鲸AI - Visual Studio Marketplace 包含了ChatGPT(3.5/4.0)等多个AI模型。可以实现代码优化&#xff0c;代码解读&#xff0c;代码bug修复等功能&#xff0c;反应迅捷&#xff0c;体验出色&#xff0c;是一个多功能的AI插件…...

HBase 集群搭建

文章目录 安装前准备兼容性官方网址 集群搭建搭建 Hadoop 集群搭建 Zookeeper 集群解压缩安装配置文件高可用配置分发 HBase 文件 服务的启停启动顺序停止顺序 验证进程查看 Web 端页面 安装前准备 兼容性 1&#xff09;与 Zookeeper 的兼容性问题&#xff0c;越新越好&#…...

大三了,C++还算可以从事什么岗位比较好?

大三了&#xff0c;C还算可以从事什么岗位比较好&#xff1f; 在开始前我有一些资料&#xff0c;是我根据自己从业十年经验&#xff0c;熬夜搞了几个通宵&#xff0c;精心整理了一份「c的资料从专业入门到高级教程工具包」&#xff0c;点个关注&#xff0c;全部无偿共享给大家…...

java 贪吃蛇游戏

前言 此实现较为简陋&#xff0c;如有错误请指正。 其次代码中的图片需要自行添加地址并修改。 主类 public class Main { public static void main(String[] args) { new myGame(); } } 1 2 3 4 5 游戏类 import javax.swing.*; import java.awt.eve…...

聊聊Java算法的时间复杂度

参考 o(1), o(n), o(logn), o(nlogn)_o&#xff08;1&#xff09;-CSDN博客算法时间复杂度的表示法O(n)、O(n)、O(1)、O(nlogn)等是什么意思&#xff1f;-CSDN博客 在描述算法复杂度时,经常用到o(1), o(n), o(logn), o(nlogn)来表示对应算法的时间复杂度, 这里进行归纳一下它…...

hive中array相关函数总结

目录 hive官方函数解释示例实战 hive官方函数解释 hive官网函数大全地址&#xff1a; hive官网函数大全地址 Return TypeNameDescriptionarrayarray(value1, value2, …)Creates an array with the given elements.booleanarray_contains(Array, value)Returns TRUE if the a…...

年终盘点文生图的狂飙之路,2023年文生图卷到什么程度了?

目录 前言发展1月2月3月4月5月6月7月9月10月11月12月 思考与总结参考文献 前言 说到文生图&#xff0c;可能有些人不清楚&#xff0c;但要说AI绘画&#xff0c;就有很多人直呼&#xff1a; 2022可以说是AI绘图大爆发的元年。 AI绘画模型可以分为扩散模型&#xff08;Diffusio…...

C++:list增删查改模拟实现

C:list增删查改模拟实现 前言一、list底层双链表验证、节点构造1.1 list底层数据结构1. 2 节点构造 二、迭代器封装实现&#xff08;重点、难点&#xff09;2.1 前置说明2.2 迭代器实现 三、list实现3.1 基本框架3.2 迭代器和const迭代器3.2 构造函数、析构函数、拷贝构造、赋值…...

基于阿里云服务网格流量泳道的全链路流量管理(二):宽松模式流量泳道

作者&#xff1a;尹航 在前文基于阿里云服务网格流量泳道的全链路流量管理&#xff08;一&#xff09;&#xff1a;严格模式流量泳道中&#xff0c;我们介绍了使用服务网格 ASM 的严格模式流量泳道进行全链路灰度管理的使用场景。该模式对于应用程序无任何要求&#xff0c;只需…...

ubuntu 18.04 共享屏幕

用于windows远程ubuntu 1. sudo apt install xrdp 2. 配置 sudo vim /etc/xrdp/startwm.sh 把最下面的test和exec两行注释掉&#xff0c;添加一行 gnome-session 3.安装dconf-editor : sudo apt-get install dconf-editor 关闭require encrytion org->gnome->desktop…...

后进先出(LIFO)详解

LIFO 是 Last In, First Out 的缩写&#xff0c;中文译为后进先出。这是一种数据结构的工作原则&#xff0c;类似于一摞盘子或一叠书本&#xff1a; 最后放进去的元素最先出来 -想象往筒状容器里放盘子&#xff1a; &#xff08;1&#xff09;你放进的最后一个盘子&#xff08…...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法&#xff0c;用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理&#xff0c;能够自动确定一个阈值&#xff0c;将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

sqlserver 根据指定字符 解析拼接字符串

DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...

【HTML-16】深入理解HTML中的块元素与行内元素

HTML元素根据其显示特性可以分为两大类&#xff1a;块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...

聊一聊接口测试的意义有哪些?

目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开&#xff0c;首…...

【Go语言基础【12】】指针:声明、取地址、解引用

文章目录 零、概述&#xff1a;指针 vs. 引用&#xff08;类比其他语言&#xff09;一、指针基础概念二、指针声明与初始化三、指针操作符1. &&#xff1a;取地址&#xff08;拿到内存地址&#xff09;2. *&#xff1a;解引用&#xff08;拿到值&#xff09; 四、空指针&am…...

iview框架主题色的应用

1.下载 less要使用3.0.0以下的版本 npm install less2.7.3 npm install less-loader4.0.52./src/config/theme.js文件 module.exports {yellow: {theme-color: #FDCE04},blue: {theme-color: #547CE7} }在sass中使用theme配置的颜色主题&#xff0c;无需引入&#xff0c;直接可…...

Golang——7、包与接口详解

包与接口详解 1、Golang包详解1.1、Golang中包的定义和介绍1.2、Golang包管理工具go mod1.3、Golang中自定义包1.4、Golang中使用第三包1.5、init函数 2、接口详解2.1、接口的定义2.2、空接口2.3、类型断言2.4、结构体值接收者和指针接收者实现接口的区别2.5、一个结构体实现多…...

Kubernetes 节点自动伸缩(Cluster Autoscaler)原理与实践

在 Kubernetes 集群中&#xff0c;如何在保障应用高可用的同时有效地管理资源&#xff0c;一直是运维人员和开发者关注的重点。随着微服务架构的普及&#xff0c;集群内各个服务的负载波动日趋明显&#xff0c;传统的手动扩缩容方式已无法满足实时性和弹性需求。 Cluster Auto…...

海云安高敏捷信创白盒SCAP入选《中国网络安全细分领域产品名录》

近日&#xff0c;嘶吼安全产业研究院发布《中国网络安全细分领域产品名录》&#xff0c;海云安高敏捷信创白盒&#xff08;SCAP&#xff09;成功入选软件供应链安全领域产品名录。 在数字化转型加速的今天&#xff0c;网络安全已成为企业生存与发展的核心基石&#xff0c;为了解…...