mac m1芯片 pytorch安装及gpu性能测试
pytorch 使用mac的m1芯片进行模型训练。
#小结:在数据量小和模型参数少,batch_size小时,cpu训练更快(原因:每次训练时数据需要放入GPU中,由于batch_size小。数据放入gpu比模型计算时间还长)
在数据量大(或者batch size大)或者模型参数多时,使用GPU训练优势明显
当模型参数大于100时,使用GPU比CPU开始有优势
注意mac gpu device是 mps ,不是cudn. device= torch.device(“mps”)
1 pytorch 安装及gpu验证
1.1 安装
mac需要安装 night 版本的pytorch
mac安装官网地址
conda install pytorch torchvision torchaudio -c pytorch-nightly
# 或者
pip3 install --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/cpu
1.2 gpu验证
主要是执行:torch.backends.mps.is_available()
以下代码输出: tensor([1.], device=‘mps:0’)
import torch
if torch.backends.mps.is_available():mps_device = torch.device("mps")x = torch.ones(1, device=mps_device)print (x)
else:print ("MPS device not found.")
2 mac m1芯片验证
实验1 :batch_size=32, 模型参数 parameter_num=476,720
gpu 运行时长: 1min 36s
cpu 运行时长: 37.5s
实验2 :batch_size=512, 模型参数 parameter_num=476,720
gpu 运行时长: 16s
cpu 运行时长: 13.3s
实验3 :batch_size=1024, 模型参数 parameter_num=476,720
gpu 运行时长: 12.7s
cpu 运行时长: 12.4s
实验4 :batch_size=1024, 模型参数 parameter_num=6,904,128
gpu 运行时长: 13.9s
cpu 运行时长: 23.8s
实验5 :batch_size=1024, 模型参数 parameter_num=23,685,440
gpu 运行时长: 20.5s
cpu 运行时长: 53.5s
实验6 :batch_size=1024, 模型参数 parameter_num=203,618,624
gpu 运行时长: 4min 11s
cpu 运行时长: 6min 49s
附录
测试代码
import torch
from torch.utils.data import DataLoader
from torchvision import datasets,transforms
from torch import nn,optim
batch_size=1024
mnist_train=datasets.MNIST("mnist",True,transform=transforms.Compose([transforms.ToTensor() ]),download=True)
mnist_train=DataLoader(mnist_train,batch_size=batch_size,shuffle=True)
minst_test=datasets.MNIST("mnist",False,transform=transforms.Compose([transforms.ToTensor() ]),download=True)
minst_test=DataLoader(minst_test,batch_size=batch_size,shuffle=True)
x,lable=next(iter(mnist_train))
print(lable)
x.shapedevice=torch.device("mps")
autoencoder=AE().to(device)
critenon=nn.MSELoss()
optimizer=optim.Adam(autoencoder.parameters(),lr=1e-4)autoencoder2=AE()
critenon2=nn.MSELoss()
optimizer2=optim.Adam(autoencoder2.parameters(),lr=1e-4)# GPU 训练
#%%time
for epoch in range(5):for index,(x,_) in enumerate(mnist_train):x=x.to(device)x_hat=autoencoder(x)loss=critenon(x_hat,x)optimizer.zero_grad()loss.backward()optimizer.step()print(epoch,"loss: ",loss.item())# CPU训练
# %%time
for epoch in range(5):for index,(x,_) in enumerate(mnist_train):x=xx_hat=autoencoder2(x)loss=critenon2(x_hat,x)optimizer2.zero_grad()loss.backward()optimizer2.step()print(epoch,"loss: ",loss.item())total_params = sum(p.numel() for p in autoencoder2.parameters())
print("Total Parameters: {:,}".format(total_params))
实验1

实验3

实验4

相关文章:
mac m1芯片 pytorch安装及gpu性能测试
pytorch 使用mac的m1芯片进行模型训练。 #小结:在数据量小和模型参数少,batch_size小时,cpu训练更快(原因:每次训练时数据需要放入GPU中,由于batch_size小。数据放入gpu比模型计算时间还长) 在…...
go 使用 - sync.WaitGroup
使用 - sync.WaitGroup 简介使用注意点 简介 waitgroup 是等待一组并发操作完成得方法。Goroutines对Go来说是独一无二的(尽管其他一些语言有类似的并发原语)。它们不是操作系统线程,它们不完全是绿色的线程(由语言运行时管理的线程)&#x…...
Java Web Day07-08_Layui
1. Layui概念介绍 layui(谐音:类 UI) 是一套开源的 Web UI 解决方案,采用自身经典的模块化规范,并遵循原生 HTML/CSS/JS 的开发方式,极易上手,拿来即用。其风格简约轻盈,而组件优雅丰盈&#x…...
阿里云华北3(张家口)暂时无法办理经营性ICP许可证
阿里云服务器的华北 3(张家口)地域暂时无法办理经营性ICP许可证,如有经营性ICP业务请勿选择此地域。如果需要办理经营性ICP业务的用户,不需要选择华北3(张家口)地域,可以选择华北2(北…...
八种常见顺序存储的算法
目录 1、线性枚举 1)问题描述 2)动图演示 3)示例说明 4)算法描述 5)源码详解 2、前缀和差分 1)问题描述 2)动图演示 3)样例分析 4)算法描述 5)源码…...
Leetcod面试经典150题刷题记录 —— 栈篇
Leetcod面试经典150题刷题记录 —— 栈篇 1. 有效的括号2. 简化路径3. 最小栈4. 逆波兰表达式求值5. 基本计算器 1. 有效的括号 题目链接:有效的括号 - leetcode 题目描述: 给定一个只包括 ( ,),{,},[&…...
【Qt-QThread-QQueue】
Qt编程指南 ■ QThread■ 示例■ QQueue■■■ QThread ■ 示例 #include <QThread> class myThread : public QThread {Q_OBJECT signals...
电子握力器改造
toy_hand_game 介绍 消耗体力玩具,使用握力器(Grip Strengthener)控制舵机旋转。 开始设想是控制丝杆电机滑动,两套设备就可以控制两个丝杆电机进行“模拟拔河”,后续发现硬件设计错误,ULN2003不能控制两相四线电机,…...
3D展2D数学原理
今年早些时候,我为 MAKE 杂志写了一篇教程,介绍如何制作视频游戏角色的毛绒动物。 该技术采用给定的角色 3D 模型及其纹理,并以编程方式生成缝纫图案。 虽然我已经编写了一般摘要并将源代码上传到 GitHub,但我在这里编写了对使这一…...
MacOS+Homebrew+iTerm2+oh my zsh+powerlevel10k美化教程
MacOS终端 你是否已厌倦了MacOS终端的大黑屏? 你是否对这种美观的终端抱有兴趣? 那么,接下来我将会教你用最简单的方式来搭建一套自己的终端。 Homebrew的安装 官网地址:Homebrew — The Missing Package Manager for macOS (o…...
jenkins解决工具找不到的问题
--------------------------插件选择版本最好能跟服务器对上...
Android : 画布的使用 简单应用
示例图: MyView.java: package com.example.demo;import android.content.Context; import android.graphics.BitmapFactory; import android.graphics.Canvas; import android.graphics.Color; import android.graphics.Paint; import android.view.Vi…...
紫光展锐5G扬帆出海 | 东南亚成为5G新热土
东南亚是一块充满活力和潜力的市场,这里人口基数大、年轻消费群体占比高,电子市场在过去几年显著增长。 增速“狂飙”的东南亚手游 近年来,东南亚手游下载量逐年增长,2023 年第一季度下载量突破 21 亿次,贡献了全球近…...
STM32 学习(一)新建工程
本课程使用的stm32型号 引脚定义,有FT能接5v,没有FT能接3.3v 启动配置 第二种启动模式中,系统存储器中存放了一部分Bootloader程序,该程序可以接收串口的数据,然后刷新到主闪存中,这样就可以使用串口下载程…...
ROBOGUIDE教程:FANUC机器人固定点焊焊接虚拟仿真
目录 概述 机器人系统创建 焊接工件模型创建 机器人抓手工具添加与工件安装 工作台添加与工件安装 固定点焊焊枪支架模型创建与组装 固定点焊焊枪添加与配置 机器人远程TCP标定(核心内容) 远程TCP手动测试 远程TCP指令介绍 机器人仿真程序编写 机器人示教编程 机…...
代码审计必要性探讨
1、背景 为了保证代码的质量,需要一系列的流程来进行保证: 今天要探讨的是代码审计的必要性。 2、代码审计 代码审计的做法多种多样,我理解必须解决以下问题 ,才可能有效: 核心:审计的本质是对比&#…...
SpringBoot-Shiro
Apache Shiro:https://shiro.apache.org/ 依赖 <dependency><groupId>org.apache.shiro</groupId><artifactId>shiro-spring</artifactId><version>1.4.1</version> </dependency>ShiroConfig.java Configuratio…...
认识Docker
大家好,这里是七七,今天起开起我们的Docker技术篇,本文是介绍Docker的,不介绍如何使用和安装Docker,只是单纯的介绍Docker。 目录 一、历史 二、Docker究竟是什么 三、Docker的结构与特性 1、Docker仓库 2、Dock…...
uniapp的分包使用记录
UniApp的分包是一种将应用代码划分为多个包的技术。分包的核心思想是将不同部分的代码划分为不同的包,按需加载,从而提高应用性能。使用UniApp的条件编译功能,开发人员可以根据需要将代码划分为多个包。每个包都包含一组页面和组件࿰…...
JSON.stringify()
一、定义 JSON.stringify() 是一个 JavaScript 内置函数,用于将 JavaScript 对象或值转换为 JSON 字符串 二、语法 JSON.stringify(value, replacer, space); value:要转换为 JSON 字符串的 JavaScript 对象或值。 eplacer(可选࿰…...
相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了: 这一篇我们开始讲: 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下: 一、场景操作步骤 操作步…...
mongodb源码分析session执行handleRequest命令find过程
mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程,并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令,把数据流转换成Message,状态转变流程是:State::Created 》 St…...
vue3 字体颜色设置的多种方式
在Vue 3中设置字体颜色可以通过多种方式实现,这取决于你是想在组件内部直接设置,还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法: 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...
零基础设计模式——行为型模式 - 责任链模式
第四部分:行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习!行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想:使多个对象都有机会处…...
Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决
Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决 问题背景 在一个基于 Spring Cloud Gateway WebFlux 构建的微服务项目中,新增了一个本地验证码接口 /code,使用函数式路由(RouterFunction)和 Hutool 的 Circle…...
Java线上CPU飙高问题排查全指南
一、引言 在Java应用的线上运行环境中,CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时,通常会导致应用响应缓慢,甚至服务不可用,严重影响用户体验和业务运行。因此,掌握一套科学有效的CPU飙高问题排查方法&…...
Java 二维码
Java 二维码 **技术:**谷歌 ZXing 实现 首先添加依赖 <!-- 二维码依赖 --><dependency><groupId>com.google.zxing</groupId><artifactId>core</artifactId><version>3.5.1</version></dependency><de…...
【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看
文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...
MySQL 索引底层结构揭秘:B-Tree 与 B+Tree 的区别与应用
文章目录 一、背景知识:什么是 B-Tree 和 BTree? B-Tree(平衡多路查找树) BTree(B-Tree 的变种) 二、结构对比:一张图看懂 三、为什么 MySQL InnoDB 选择 BTree? 1. 范围查询更快 2…...
es6+和css3新增的特性有哪些
一:ECMAScript 新特性(ES6) ES6 (2015) - 革命性更新 1,记住的方法,从一个方法里面用到了哪些技术 1,let /const块级作用域声明2,**默认参数**:函数参数可以设置默认值。3&#x…...
