Centos安装Kafka(KRaft模式)
1. KRaft引入
Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者在网站中的所有动作流数据。其核心组件包含Producer、Broker、Consumer,以及依赖的Zookeeper集群。其中Zookeeper集群是Kafka用来负责集群元数据的管理、控制器的选举等。
由于重度依赖Zookeeper集群,当Zookeeper集群性能发生抖动时,Kafka的性能也会收到很大的影响。因此,在Kafka发展的过程当中,为了解决这个问题,提供KRaft模式,来取消Kafka对Zookeeper的依赖。
在Kafka引入KRaft新内部功能后,对Zookeeper的依赖将会被取消。在 KRaft 中,一部分 broker 被指定为控制器,这些控制器提供过去由 ZooKeeper 提供的共识服务。所有集群元数据都将存储在 Kafka 的topic中并在内部进行管理。
2. KRaft模式优势
- 更简单的部署和管理。通过只安装和管理一个应用程序,Kafka 现在的运营足迹要小得多,这也使得在边缘的小型设备中更容易利用 Kafka;
- 提高可扩展性。KRaft 的恢复时间比 ZooKeeper 快一个数量级,这使我们能够有效地扩展到单个集群中的数百万个分区。ZooKeeper 的有效限制是数万;
- 更有效的元数据传播。基于日志、事件驱动的元数据传播可以提高 Kafka 的许多核心功能的性能。
3. Kafka部署(单机版)
- jdk安装,略
- scala安装,略
- kafka安装,注意和scala版本对应。
-
下载安装包:
wget https://downloads.apache.org/kafka/3.5.2/kafka_2.12-3.5.2.tgz --no-check-certificate。
注意:kafka_2.12-3.5.2.tgz,2.12对应scala版本;3.5.2对应kafka版本。 -
解压:
tar -zxvf kafka_2.12-3.5.2.tgz -C /export/server/ -
创建数据存储目录:
mkdir /data/kafka_kraft-combined-log -
修改配置文件:
vim kafka_2.12-3.5.2/config/kraft/server.properties# Kafka broker对外公布的监听地址和端口 advertised.listeners=PLAINTEXT://192.168.1.6:9092 # Kafka存储数据的目录 log.dirs=/data/kafka_kraft-combined-log -
格式化存储目录
执行命令:kafka_2.12-3.5.2/bin/kafka-storage.sh random-uuid,得到一个uuid:xxxxx…
执行命令:kafka_2.12-3.5.2/bin/kafka-storage.sh format -t xxxxx -c config/kraft/server.properties,格式化存储目录。格式化之后的存储目录多了以下两个文件:

-
安装完成,开始使用吧。
-
4. Kafka使用
-
单机启动:
kafka_2.12-3.5.2/bin/kafka-server-start.sh -daemon config/kraft/server.properties -
单机停止:
kafka_2.12-3.5.2/bin/kafka-server-stop.sh -
查看进程

-
创建topic:
kafka_2.12-3.5.2/bin/kafka-topics.sh --create --topic predict_task_log --bootstrap-server 192.168.1.6:9092创建完topic之后,会在数据存储目录自动新增目录用来存放该topic数据。

相关文章:
Centos安装Kafka(KRaft模式)
1. KRaft引入 Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者在网站中的所有动作流数据。其核心组件包含Producer、Broker、Consumer,以及依赖的Zookeeper集群。其中Zookeeper集群是Kafka用来负责集群元数据的管理、控制器的选举等。 由…...
学习笔记13——Spring整合Mybatis、junit、AOP、事务
学习笔记系列开头惯例发布一些寻亲消息 链接:https://baobeihuijia.com/bbhj/ Mybatis - Spring(使用第三方包new一个对象bean) 原始的Mybatis与数据库交互【通过sqlmapconfig来配置和连接】 初始化SqlSessionFactory获得连接获取数据层接口…...
【12月比赛合集】4场可报名的「创新应用」、「数据分析」和「程序设计」大奖赛,任君挑选!
CompHub[1] 实时聚合多平台的数据类(Kaggle、天池…)和OJ类(Leetcode、牛客…)比赛。本账号会推送最新的比赛消息,欢迎关注! 以下信息仅供参考,以比赛官网为准 目录 数据分析赛(1场比赛)程序设计赛&#…...
Cisco模拟器-企业网络部署
某企业园区网有:2个分厂(分别是:零件分厂、总装分厂)1个总厂网络中心 1个总厂会议室; (1)每个分厂有自己的路由器,均各有:1个楼宇分厂网络中心 每个楼宇均包含&#x…...
WPF+Halcon 培训项目实战(12):WPF导出匹配模板
文章目录 前言相关链接项目专栏运行环境匹配图片WPF导出匹配模板如何了解Halcon和C#代码的对应关系逻辑分析:添加截取ROI功能基类矩形圆形 生成导出模板运行结果:可能的报错你的文件路径不存在你选择的区域的内容有效信息过少 前言 为了更好地去学习WPF…...
uniapp中uview组件库的丰富Upload 上传上午用法
目录 基础用法 #上传视频 #文件预览 #隐藏上传按钮 #限制上传数量 #自定义上传样式 API #Props #Methods #Slot #Events 基础用法 可以通过设置fileList参数(数组,元素为对象),显示预置的图片。其中元素的url属性为图片路径 <template>…...
Unity关于动画混合树(Blend Tree)的使用
在动画与动画的切换过程中,常因为两个动画之间的差距过大,而显得动画的切换很不自然。 这时候就需要动画混合树Blend Tree这个功能。使用混合树可以将多个动画混合在一起,例如在处理角色的移动中,走动画与跑动画切换的时候&#x…...
怎么下载landsat 8影像并在ArcGIS Pro中进行波段组合
Landsat 8(前身为Landsat数据连续性任务,或 LDCM)于2013年2月11日由 Atlas-V火箭从加利福尼亚州范登堡空军基地发射升空,这里为大家介绍一下该数据的下载的方法,希望能对你有所帮助。 注册账号 如果之前已经注册过的…...
编程新手IDE
身为一个前端开发者,我深知一个好的开发环境对于编程体验的重要性。对于新手来说,选择一个合适的IDE(集成开发环境)更是至关重要。一个好的IDE可以提高编程效率,减少错误,让新手更专注于学习编程本身。 今…...
如何将一个JSON字符串解析为JavaScript对象或值
JSON.parse(JSON.stringify(data)) 将后端传入的JSON数据data放入该方法的参数中,返回的结果就是JavaScript对象 比如将后端传入的对象key作为对象,而不是字符串双引号格式 {"path": "/home","name": "home",…...
idea配置docker推送本地镜像到远程私有仓库
目录 1,搭建远程Docker 私有仓库 Docker registry 2,Windows10/11系统上安装Docker Desktop 3,idea 配置远程私有仓库地址 4,idea 配置Docker 5,idea在本地构建镜像 6,推送本地Docker镜像到远程 Dock…...
Spring Boot学习随笔- 集成MyBatis-Plus(二)条件查询QueryWrapper、聚合函数的使用、Lambda条件查询
学习视频:【编程不良人】Mybatis-Plus整合SpringBoot实战教程,提高的你开发效率,后端人员必备! 查询方法详解 普通查询 // 根据主键id去查询单个结果的。 Test public void selectById() {User user userMapper.selectById(1739970502337392641L);System.out.print…...
十二、K8S之污点和容忍
污点和容忍 一、概念 k8s 集群中可能管理着非常庞大的服务器,这些服务器可能是各种各样不同类型的,比如机房、地理位置、配置等,有些是计算型节点,有些是存储型节点,此时我们希望能更好的将 pod 调度到与之需求更匹配…...
llvm后端之指令选择源码分析
llvm后端之指令选择源码分析 引言1 主要流程1.1 参数降级1.2 构建DAG1.3 类型合法化1.4 向量合法化1.5 DAG合法化1.6 DAG合并 2 目标实现2.1 TargetLowering2.2 SelectionDAGISel 引言 llvm后端指令选择主要是class SelectionDAGISel的子类实现。整个过程将llvm IR转为有向无环…...
【消息中间件】Rabbitmq消息可靠性、持久化机制、各种消费
原文作者:我辈李想 版权声明:文章原创,转载时请务必加上原文超链接、作者信息和本声明。 文章目录 前言一、常见用法1.消息可靠性2.持久化机制3.消息积压批量消费:增加 prefetch 的数量,提高单次连接的消息数并发消费:…...
aws-sdk-cpp通过bazel构建的S3_client轮子
感觉时间过得很快,又是很久没有更新了 哎,主要原因还是很久都没有学什么东西了,进入社会后不知不觉间倦怠了许多 没什么办法,上班了之后做的很多东西都是调用api,越来越像一个工具人了,虽然说本身也大差不…...
关于WPF MVVM 的详细使用过程以及注意的问题
WPF MVVM 是一种常用的设计模式,在 WPF 应用程序中使用它可以更好地分离界面逻辑和业务逻辑,并且更容易进行单元测试和重构。下面是深入理解 WPF MVVM 的详细使用过程以及注意的问题。 一、MVVM 的基本概念 MVVM 是 Model-View-ViewModel 的缩写&#…...
计算机视觉 全教程目录
1、OpenCV 图像处理框架 实战系列 总目录 OpenCV 图像处理框架 实战系列 总目录 2、现代卷积网络实战系列 总目录 现代卷积网络实战系列 总目录 3、YOLO 物体检测 系列教程 总目录 YOLO 物体检测 系列教程 总目录 4、图像分割实战-系列教程 总目录 图像分割实战-系列教程 总目录…...
油猴脚本开发,之如何添加html和css
简介 油猴是一个脚本管理器,让我们能够方便的使用js脚本,以实现对页面内容的修改、功能增强或其他定制化操作。 常见脚本管理器 Tampermonkey 应该是各位见得最多的也是最知名的,好用又稳定,多浏览器支持Greasemonkey 用户脚本始祖&#x…...
【MATLAB】BiGRU神经网络时序预测算法
有意向获取代码,请转文末观看代码获取方式~也可转原文链接获取~ 1 基本定义 BiGRU神经网络时序预测算法是一种基于双向门控循环单元(GRU)的多变量时间序列预测方法。该方法结合了双向模型和门控机制,旨在有效地捕捉时间序列数据中…...
UE5 学习系列(二)用户操作界面及介绍
这篇博客是 UE5 学习系列博客的第二篇,在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下: 【Note】:如果你已经完成安装等操作,可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作,重…...
突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...
学校招生小程序源码介绍
基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码,专为学校招生场景量身打造,功能实用且操作便捷。 从技术架构来看,ThinkPHP提供稳定可靠的后台服务,FastAdmin加速开发流程,UniApp则保障小程序在多端有良好的兼…...
高等数学(下)题型笔记(八)空间解析几何与向量代数
目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...
C# SqlSugar:依赖注入与仓储模式实践
C# SqlSugar:依赖注入与仓储模式实践 在 C# 的应用开发中,数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护,许多开发者会选择成熟的 ORM(对象关系映射)框架,SqlSugar 就是其中备受…...
HashMap中的put方法执行流程(流程图)
1 put操作整体流程 HashMap 的 put 操作是其最核心的功能之一。在 JDK 1.8 及以后版本中,其主要逻辑封装在 putVal 这个内部方法中。整个过程大致如下: 初始判断与哈希计算: 首先,putVal 方法会检查当前的 table(也就…...
面向无人机海岸带生态系统监测的语义分割基准数据集
描述:海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而,目前该领域仍面临一个挑战,即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...
Java编程之桥接模式
定义 桥接模式(Bridge Pattern)属于结构型设计模式,它的核心意图是将抽象部分与实现部分分离,使它们可以独立地变化。这种模式通过组合关系来替代继承关系,从而降低了抽象和实现这两个可变维度之间的耦合度。 用例子…...
规则与人性的天平——由高考迟到事件引发的思考
当那位身着校服的考生在考场关闭1分钟后狂奔而至,他涨红的脸上写满绝望。铁门内秒针划过的弧度,成为改变人生的残酷抛物线。家长声嘶力竭的哀求与考务人员机械的"这是规定",构成当代中国教育最尖锐的隐喻。 一、刚性规则的必要性 …...
当下AI智能硬件方案浅谈
背景: 现在大模型出来以后,打破了常规的机械式的对话,人机对话变得更聪明一点。 对话用到的技术主要是实时音视频,简称为RTC。下游硬件厂商一般都不会去自己开发音视频技术,开发自己的大模型。商用方案多见为字节、百…...
