当前位置: 首页 > news >正文

【论文阅读】Self-Paced Curriculum Learning

论文下载
代码
Supplementary Materials
bib:

@INPROCEEDINGS{,title		= {Self-Paced Curriculum Learning},author	    = {Lu Jiang and Deyu Meng and Qian Zhao and Shiguang Shan and Alexander Hauptmann},booktitle	= {AAAI},year		= {2015},pages      = {2694--2700}
}

1. 摘要

Curriculum learning (CL) or self-paced learning (SPL) represents a recently proposed learning regime inspired by the learning process of humans and animals that gradually proceeds from easy to more complex samples in training.

The two methods share a similar conceptual learning paradigm, but differ in specific learning schemes.

In CL, the curriculum is predetermined by prior knowledge, and remain fixed thereafter.

Therefore, this type of method heavily relies on the quality of prior knowledge while ignoring feedback about the learner.

In SPL, the curriculum is dynamically determined to adjust to the learning pace of the leaner.

However, SPL is unable to deal with prior knowledge, rendering it prone to overfitting.

In this paper, we discover the missing link between CL and SPL, and propose a unified framework named self-paced curriculum leaning (SPCL).

SPCL is formulated as a concise optimization problem that takes into account both prior knowledge known before training and the learning progress during training.

In comparison to human education, SPCL is analogous to “instructor-student-collaborative” learning mode, as opposed to “instructor-driven” in CL or “student-driven” in SPL.

Empirically, we show that the advantage of SPCL on two tasks.

课程学习(CL)或自定进度学习(SPL)代表了最近提出的一种学习制度,其灵感来自人类和动物的学习过程,在训练中逐渐从简单到更复杂的样本进行。 这两种方法具有相似的概念学习范式,但具体的学习方案有所不同。 在 CL 中,课程是由先验知识预先确定的,并且此后保持固定。 因此,这种方法严重依赖先验知识的质量,而忽略了学习者的反馈。 在 SPL 中,课程是动态确定的,以适应学习者的学习节奏。 然而,SPL 无法处理先验知识,因此容易出现过度拟合。 在本文中,我们发现了 CL 和 SPL 之间缺失的联系,并提出了一个名为自定进度课程学习(SPCL)的统一框架。 SPCL 被表述为一个简洁的优化问题,它考虑了训练前已知的先验知识和训练期间的学习进度。 与人类教育相比,SPCL类似于“师生协作”的学习模式,而不是CL中的“教师驱动”或SPL中的“学生驱动”。 根据经验,我们展示了 SPCL 在两项任务上的优势。

Note:

  1. 课程学习依赖于课程先验,在许多场景中,课程先验一般都是缺失的。这种方法严重依赖于先验知识的质量,而忽略了学习者的反馈,相当于是老师主导。
  2. 自步学习中课程是动态确定的,以适应学习者节奏。其中,动态确定只是按照loss的高低当作是样本的难易,无法处理额外加入的知识先验。

2. 算法描述

2.1. 自步学习

min ⁡ w , v ∈ [ 0 , 1 ] n E ( w , v ; λ ) = ∑ i = 1 n v i L ( y i , f ( x i , w ) ) − λ ∥ v ∥ 1 (1) \min_{\mathbf{w}, \mathbf{v} \in[0, 1]^n}\mathbb{E}(\mathbf{w}, \mathbf{v};\lambda) = \sum_{i=1}^n{v_iL(y_i, f(x_i,\mathbf{w}))} - \lambda\|\mathbf{v}\|_1 \tag{1} w,v[0,1]nminE(w,v;λ)=i=1nviL(yi,f(xi,w))λv1(1)

等式1应该就是自步学习中最经典的形式了。其中,对于自步正则 − ∥ v ∥ 1 -\|\mathbf{v}\|_1 v1是可以替换的,有很多的类型,这个是最经典的hard型(非0即1)。对于等式1的求解可以采用ACS (Alternative Convex Search)。

  1. 固定 w \mathbf{w} w,求解 v \mathbf{v} v。存在闭式解 v ∗ = [ v 1 ∗ , … , v n ∗ ] \mathbf{v}^* = [v_1^*, \dots, v_n^*] v=[v1,,vn],
    v i ∗ = { 1 , L ( y i , f ( x i , w ) ) < λ ; 0 , otherwise. v_i^* = \begin{cases} 1, & L(y_i, f(x_i, \mathbf{w})) < \lambda;\\ 0, &\text{otherwise.}\\ \end{cases} vi={1,0,L(yi,f(xi,w))<λ;otherwise.
  2. 固定 v \mathbf{v} v,用梯度下降法(也可以用其他优化方法)求解 w \mathbf{w} w

存在的弊端:

However, since the learning is completely dominated by the training loss, the learning may be prone to overfitting. Moreover, it provides no way to incorporate prior guidance in learning. To the best of our knowledge, there has been no studies to incorporate prior knowledge into SPL, nor to analyze the relation between CL and SPL.

2.1. 自步课程学习

自步课程学习想要打造一种师生协同的学习范式,其中,同时考虑训练前已知的先验知识和训练期间学到的知识。

Self-paced Curriculum Learning:

3. 实验

from scipy.optimize import minimize
import numpy as np# samples
id = np.array(['a', 'b', 'c', 'd', 'e', 'f'])
myloss = np.array([0.1, 0.2, 0.4, 0.6, 0.5, 0.3]).reshape([-1, 1])
print("####### input loss ######")
print(myloss)# 4) calculate curriculum constraints
# A = matrix(0, nrow=length(id), ncol=1)
# curriculum constraints matrix
A = np.zeros([len(id), 1])
A[:, 0] = np.array([0.1, 0.0, 0.4, 0.3, 0.5, 1.0])
# A[:, 0] = np.array([2.3, 2.2, 2.1, 2.0, 1.7, 1.5])
print("####### A matrix ######")
print("A: ", A)
c = 1.0
# c = 6.0# 5) optimize v with modality constraint (A)
# v0 = replicate(length(id),0)
v0 = np.repeat(0, len(id))
print("v0: ", v0)
# a small constant for optmization accuracy
tolerance = 1e-7
print("tolerance: ", tolerance)# tolerance = 0
# parameter in self-paced learning
lambda_var = 0.8333# paramaters
u1 = -1 * A  # -Av >= -c	i.e.	Av <= c# c1 = -1 * c - tolerance  # -Av >= -c	i.e.	Av <= c
c1 = c + tolerance# 三个约束
# v 大于等于 0
# v 小于等于 1
# A^T \times V <= c
# inequality means that it is to be non-negative.
cons = ({'type': 'ineq', 'fun': lambda v: v @ u1 + c1})# 定义目标函数
def objective_function(v):obj = v @ myloss - lambda_var * np.sum(v)return obj# 定义目标函数的梯度
def objective_gradient(v):grads = myloss - lambda_varreturn grads# 设置bounds
# bounds = tuple([(-tolerance, 1 + tolerance) for i in range(len(v0))])
bounds = tuple([(0, 1) for i in range(len(v0))])
# x0 = np.zeros([len(id)])
# res_SLSQP = minimize(objective_function, v0, method='SLSQP', jac=objective_gradient, constraints=cons, bounds=bounds)# res = minimize(objective_function, v0, method='SLSQP', constraints=cons, bounds=bounds)
print("###res_SLSQP###")
res_SLSQP = minimize(objective_function, v0, method='SLSQP', jac=objective_gradient, constraints=cons, bounds=bounds,options={"maxiter": 100, "disp": True})
print('最小值:', res_SLSQP.fun)
print('最优解:', res_SLSQP.x)
print('迭代终止是否成功:', res_SLSQP.success)
print('迭代终止原因:', res_SLSQP.message)
print("最终解是否满足先验课程知识: ", res_SLSQP.x @ u1 + c1 >= 0)print("###COBYLA###")
res_COBYLA = minimize(objective_function, v0, method='COBYLA', jac=objective_gradient, constraints=cons, bounds=bounds,options={"maxiter": 100, "disp": True})
print('最小值:', res_COBYLA.fun)
print('最优解:', res_COBYLA.x)
print('迭代终止是否成功:', res_COBYLA.success)
print('迭代终止原因:', res_COBYLA.message)
print("最终解是否满足先验课程知识: ", res_COBYLA.x @ u1 + c1 >= 0)# v_2 = np.array([1, 1, 1, 0.88, 0.47, 0])
v_2 = np.array([1, 0.91, 0.10, 0.00, 0.00, 1.00])
print('论文最优解:', v_2)
print("论文最小值:", objective_function(v_2))
print("论文最终解是否满足先验课程知识: ", v_2 @ u1 + c1 >= 0)

相关文章:

【论文阅读】Self-Paced Curriculum Learning

论文下载 代码 Supplementary Materials bib: INPROCEEDINGS{,title {Self-Paced Curriculum Learning},author {Lu Jiang and Deyu Meng and Qian Zhao and Shiguang Shan and Alexander Hauptmann},booktitle {AAAI},year {2015},pages {2694--2700} }1. 摘…...

C++简易线程池

原理说明&#xff1a; 1. 线程池创建时&#xff0c;指定线程池的大小thread_size。当有新的函数任务通过函数addFunction ()添加进来后&#xff0c;其中一个线程执行函数。一个线程一次执行一个函数。如果函数数量大与线程池数量&#xff0c;则后来的函数等待。 2. 线程池内部…...

【MATLAB】PSO粒子群优化LSTM(PSO_LSTM)的时间序列预测

有意向获取代码&#xff0c;请转文末观看代码获取方式~也可转原文链接获取~ 1 基本定义 PSO粒子群优化LSTM&#xff08;PSO-LSTM&#xff09;是一种将粒子群优化算法&#xff08;PSO&#xff09;与长短期记忆神经网络&#xff08;LSTM&#xff09;相结合的混合模型。该算法通过…...

产品经理学习-怎么写PRD文档

目录 瀑布流方法论介绍 产品需求文档&#xff08;PRD&#xff09;介绍 产品需求文档的基本要素 撰写产品需求文档 优先产品需求文档的特点 其他相关文档 瀑布流方法论介绍 瀑布流模型是一种项目的开发和管理的方法论&#xff0c;是敏捷的开发管理方式相对应的另一种方法…...

第3课 获取并播放音频流

本课对应源文件下载链接&#xff1a; https://download.csdn.net/download/XiBuQiuChong/88680079 FFmpeg作为一套庞大的音视频处理开源工具&#xff0c;其源码有太多值得研究的地方。但对于大多数初学者而言&#xff0c;如何快速利用相关的API写出自己想要的东西才是迫切需要…...

Spark编程实验四:Spark Streaming编程

目录 一、目的与要求 二、实验内容 三、实验步骤 1、利用Spark Streaming对三种类型的基本数据源的数据进行处理 2、利用Spark Streaming对Kafka高级数据源的数据进行处理 3、完成DStream的两种有状态转换操作 4、把DStream的数据输出保存到文本文件或MySQL数据库中 四…...

Flink去重计数统计用户数

1.数据 订单表&#xff0c;分别是店铺id、用户id和支付金额 "店铺id,用户id,支付金额", "shop-1,user-1,1", "shop-1,user-2,1", "shop-1,user-2,1", "shop-1,user-3,1", "shop-1,user-3,1", "shop-1,user…...

力扣:62. 不同路径(动态规划,附python二维数组的定义)

题目&#xff1a; 一个机器人位于一个 m x n 网格的左上角 &#xff08;起始点在下图中标记为 “Start” &#xff09;。 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角&#xff08;在下图中标记为 “Finish” &#xff09;。 问总共有多少条不同的路径&…...

2022年全球运维大会(GOPS深圳站)-核心PPT资料下载

一、峰会简介 GOPS 主要面向运维行业的中高端技术人员&#xff0c;包括运维、开发、测试、架构师等群体。目的在于帮助IT技术从业者系统学习了解相关知识体系&#xff0c;让创新技术推动社会进步。您将会看到国内外知名企业的相关技术案例&#xff0c;也能与国内顶尖的技术专家…...

8868体育助力意甲罗马俱乐部 迪巴拉有望付出

8868体育助力意甲罗马俱乐部 迪巴拉有望付出 意甲罗马俱乐部是8868体育合作球队之一&#xff0c;本赛季&#xff0c;在意甲第14轮的比赛中&#xff0c;罗马客场2-1战胜萨索洛&#xff0c;积分上升到意甲第4位。 有报道称&#xff0c;迪巴拉在对阵佛罗伦萨的比赛中受伤&#xff…...

java设计模式实战【策略模式+观察者模式+命令模式+组合模式,混合模式在支付系统中的应用】

引言 在代码开发的世界里&#xff0c;理论知识的重要性毋庸置疑&#xff0c;但实战经验往往才是知识的真正试金石。正所谓&#xff0c;“读万卷书不如行万里路”&#xff0c;理论的学习需要通过实践来验证和深化。设计模式作为软件开发中的重要理论&#xff0c;其真正的价值在…...

小程序wx:if 和hidden的区别?

在小程序中&#xff0c;wx:if 和 hidden 是用于条件渲染的两种不同方式。 选择使用哪种方式取决于具体情况。如果条件变化频繁或节点包含复杂的子节点&#xff0c;可以考虑使用 wx:if 进行条件渲染&#xff1b;如果条件变化较少且节点结构简单&#xff0c;可以使用 hidden 控制…...

自动驾驶学习笔记(二十三)——车辆控制模型

#Apollo开发者# 学习课程的传送门如下&#xff0c;当您也准备学习自动驾驶时&#xff0c;可以和我一同前往&#xff1a; 《自动驾驶新人之旅》免费课程—> 传送门 《Apollo开放平台9.0专项技术公开课》免费报名—>传送门 文章目录 前言 运动学模型 动力学模型 总结…...

Linux Shell 015-文本双向覆盖重定向工具tee

Linux Shell 015-文本双向覆盖重定向工具tee 本节关键字&#xff1a;Linux、Bash Shell、文本双向覆盖重定向工具 相关指令&#xff1a;tee、echo、cat tee介绍 tee工具是从标准输入读取并写入到标准输出和文件&#xff0c;即&#xff1a;双向覆盖重定向&#xff08;屏幕输出…...

【PyQt】(自定义类)QIcon派生,更易用的纯色Icon

嫌Qt自带的icon太丑&#xff0c;自己写了一个&#xff0c;主要用于纯色图标的自由改色。 当然&#xff0c;图标素材得网上找。 Qt原生图标与现代图标对比&#xff1a; 没有对比就没有伤害 Qt图标 网络素材图标 自定义类XJQ_Icon&#xff1a; from PyQt5.QtGui import QIc…...

【mysql】数据处理格式化、转换、判断

数据处理 判断是否超时&#xff0c;时间是否大于当前时间计算分钟数时间格式化处理如果数值类型进行转换字符类型字符拼接case-when代替if-else判断数据空&#xff08;特殊&#xff1a;含空数据、空字符处理&#xff09; select /*判断是否超时&#xff0c;时间是否大于当前…...

深入探索Java中的UDP网络通信机制

在网络通信中&#xff0c;UDP&#xff08;User Datagram Protocol&#xff0c;用户数据报协议&#xff09;是一种无连接的协议&#xff0c;它在某些情况下比TCP更适合&#xff0c;尤其是在要求速度快、对数据准确性要求相对较低的场景下。本文将介绍如何使用Java进行UDP网络通信…...

List常见方法和遍历操作

List集合的特点 有序&#xff1a; 存和取的元素顺序一致有索引&#xff1a;可以通过索引操作元素可重复&#xff1a;存储的元素可以重复 List集合的特有方法 Collection的方法List都继承了List集合因为有索引&#xff0c;所以有了很多操作索引的方法 ublic static void main…...

【基础篇】一、认识JVM

文章目录 1、虚拟机2、Java虚拟机3、JVM的整体结构4、Java代码的执行流程5、JVM的三大功能6、JVM的分类7、JVM的生命周期 1、虚拟机 虚拟机&#xff0c;Virtual Machine&#xff0c;一台虚拟的计算机&#xff0c;用来执行虚拟计算机指令。分为&#xff1a; 系统虚拟机&#x…...

DrGraph原理示教 - OpenCV 4 功能 - 颜色空间

前言 前段时间&#xff0c;甲方提出明确需求&#xff0c;让把软件国产化。稍微研究了一下&#xff0c;那就转QT开发&#xff0c;顺便把以前的功能代码重写一遍。 至于在Ubuntu下折腾QT、OpenCV安装事宜&#xff0c;网上文章很多&#xff0c;照猫画虎即可。 这个过程&#xff0…...

【杂谈】-递归进化:人工智能的自我改进与监管挑战

递归进化&#xff1a;人工智能的自我改进与监管挑战 文章目录 递归进化&#xff1a;人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管&#xff1f;3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...

c++ 面试题(1)-----深度优先搜索(DFS)实现

操作系统&#xff1a;ubuntu22.04 IDE:Visual Studio Code 编程语言&#xff1a;C11 题目描述 地上有一个 m 行 n 列的方格&#xff0c;从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子&#xff0c;但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...

工程地质软件市场:发展现状、趋势与策略建议

一、引言 在工程建设领域&#xff0c;准确把握地质条件是确保项目顺利推进和安全运营的关键。工程地质软件作为处理、分析、模拟和展示工程地质数据的重要工具&#xff0c;正发挥着日益重要的作用。它凭借强大的数据处理能力、三维建模功能、空间分析工具和可视化展示手段&…...

Python实现prophet 理论及参数优化

文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候&#xff0c;写过一篇简单实现&#xff0c;后期随着对该模型的深入研究&#xff0c;本次记录涉及到prophet 的公式以及参数调优&#xff0c;从公式可以更直观…...

前端开发面试题总结-JavaScript篇(一)

文章目录 JavaScript高频问答一、作用域与闭包1.什么是闭包&#xff08;Closure&#xff09;&#xff1f;闭包有什么应用场景和潜在问题&#xff1f;2.解释 JavaScript 的作用域链&#xff08;Scope Chain&#xff09; 二、原型与继承3.原型链是什么&#xff1f;如何实现继承&a…...

dify打造数据可视化图表

一、概述 在日常工作和学习中&#xff0c;我们经常需要和数据打交道。无论是分析报告、项目展示&#xff0c;还是简单的数据洞察&#xff0c;一个清晰直观的图表&#xff0c;往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server&#xff0c;由蚂蚁集团 AntV 团队…...

Java求职者面试指南:计算机基础与源码原理深度解析

Java求职者面试指南&#xff1a;计算机基础与源码原理深度解析 第一轮提问&#xff1a;基础概念问题 1. 请解释什么是进程和线程的区别&#xff1f; 面试官&#xff1a;进程是程序的一次执行过程&#xff0c;是系统进行资源分配和调度的基本单位&#xff1b;而线程是进程中的…...

jmeter聚合报告中参数详解

sample、average、min、max、90%line、95%line,99%line、Error错误率、吞吐量Thoughput、KB/sec每秒传输的数据量 sample&#xff08;样本数&#xff09; 表示测试中发送的请求数量&#xff0c;即测试执行了多少次请求。 单位&#xff0c;以个或者次数表示。 示例&#xff1a;…...

协议转换利器,profinet转ethercat网关的两大派系,各有千秋

随着工业以太网的发展&#xff0c;其高效、便捷、协议开放、易于冗余等诸多优点&#xff0c;被越来越多的工业现场所采用。西门子SIMATIC S7-1200/1500系列PLC集成有Profinet接口&#xff0c;具有实时性、开放性&#xff0c;使用TCP/IP和IT标准&#xff0c;符合基于工业以太网的…...

webpack面试题

面试题&#xff1a;webpack介绍和简单使用 一、webpack&#xff08;模块化打包工具&#xff09;1. webpack是把项目当作一个整体&#xff0c;通过给定的一个主文件&#xff0c;webpack将从这个主文件开始找到你项目当中的所有依赖文件&#xff0c;使用loaders来处理它们&#x…...