当前位置: 首页 > news >正文

【论文阅读】Self-Paced Curriculum Learning

论文下载
代码
Supplementary Materials
bib:

@INPROCEEDINGS{,title		= {Self-Paced Curriculum Learning},author	    = {Lu Jiang and Deyu Meng and Qian Zhao and Shiguang Shan and Alexander Hauptmann},booktitle	= {AAAI},year		= {2015},pages      = {2694--2700}
}

1. 摘要

Curriculum learning (CL) or self-paced learning (SPL) represents a recently proposed learning regime inspired by the learning process of humans and animals that gradually proceeds from easy to more complex samples in training.

The two methods share a similar conceptual learning paradigm, but differ in specific learning schemes.

In CL, the curriculum is predetermined by prior knowledge, and remain fixed thereafter.

Therefore, this type of method heavily relies on the quality of prior knowledge while ignoring feedback about the learner.

In SPL, the curriculum is dynamically determined to adjust to the learning pace of the leaner.

However, SPL is unable to deal with prior knowledge, rendering it prone to overfitting.

In this paper, we discover the missing link between CL and SPL, and propose a unified framework named self-paced curriculum leaning (SPCL).

SPCL is formulated as a concise optimization problem that takes into account both prior knowledge known before training and the learning progress during training.

In comparison to human education, SPCL is analogous to “instructor-student-collaborative” learning mode, as opposed to “instructor-driven” in CL or “student-driven” in SPL.

Empirically, we show that the advantage of SPCL on two tasks.

课程学习(CL)或自定进度学习(SPL)代表了最近提出的一种学习制度,其灵感来自人类和动物的学习过程,在训练中逐渐从简单到更复杂的样本进行。 这两种方法具有相似的概念学习范式,但具体的学习方案有所不同。 在 CL 中,课程是由先验知识预先确定的,并且此后保持固定。 因此,这种方法严重依赖先验知识的质量,而忽略了学习者的反馈。 在 SPL 中,课程是动态确定的,以适应学习者的学习节奏。 然而,SPL 无法处理先验知识,因此容易出现过度拟合。 在本文中,我们发现了 CL 和 SPL 之间缺失的联系,并提出了一个名为自定进度课程学习(SPCL)的统一框架。 SPCL 被表述为一个简洁的优化问题,它考虑了训练前已知的先验知识和训练期间的学习进度。 与人类教育相比,SPCL类似于“师生协作”的学习模式,而不是CL中的“教师驱动”或SPL中的“学生驱动”。 根据经验,我们展示了 SPCL 在两项任务上的优势。

Note:

  1. 课程学习依赖于课程先验,在许多场景中,课程先验一般都是缺失的。这种方法严重依赖于先验知识的质量,而忽略了学习者的反馈,相当于是老师主导。
  2. 自步学习中课程是动态确定的,以适应学习者节奏。其中,动态确定只是按照loss的高低当作是样本的难易,无法处理额外加入的知识先验。

2. 算法描述

2.1. 自步学习

min ⁡ w , v ∈ [ 0 , 1 ] n E ( w , v ; λ ) = ∑ i = 1 n v i L ( y i , f ( x i , w ) ) − λ ∥ v ∥ 1 (1) \min_{\mathbf{w}, \mathbf{v} \in[0, 1]^n}\mathbb{E}(\mathbf{w}, \mathbf{v};\lambda) = \sum_{i=1}^n{v_iL(y_i, f(x_i,\mathbf{w}))} - \lambda\|\mathbf{v}\|_1 \tag{1} w,v[0,1]nminE(w,v;λ)=i=1nviL(yi,f(xi,w))λv1(1)

等式1应该就是自步学习中最经典的形式了。其中,对于自步正则 − ∥ v ∥ 1 -\|\mathbf{v}\|_1 v1是可以替换的,有很多的类型,这个是最经典的hard型(非0即1)。对于等式1的求解可以采用ACS (Alternative Convex Search)。

  1. 固定 w \mathbf{w} w,求解 v \mathbf{v} v。存在闭式解 v ∗ = [ v 1 ∗ , … , v n ∗ ] \mathbf{v}^* = [v_1^*, \dots, v_n^*] v=[v1,,vn],
    v i ∗ = { 1 , L ( y i , f ( x i , w ) ) < λ ; 0 , otherwise. v_i^* = \begin{cases} 1, & L(y_i, f(x_i, \mathbf{w})) < \lambda;\\ 0, &\text{otherwise.}\\ \end{cases} vi={1,0,L(yi,f(xi,w))<λ;otherwise.
  2. 固定 v \mathbf{v} v,用梯度下降法(也可以用其他优化方法)求解 w \mathbf{w} w

存在的弊端:

However, since the learning is completely dominated by the training loss, the learning may be prone to overfitting. Moreover, it provides no way to incorporate prior guidance in learning. To the best of our knowledge, there has been no studies to incorporate prior knowledge into SPL, nor to analyze the relation between CL and SPL.

2.1. 自步课程学习

自步课程学习想要打造一种师生协同的学习范式,其中,同时考虑训练前已知的先验知识和训练期间学到的知识。

Self-paced Curriculum Learning:

3. 实验

from scipy.optimize import minimize
import numpy as np# samples
id = np.array(['a', 'b', 'c', 'd', 'e', 'f'])
myloss = np.array([0.1, 0.2, 0.4, 0.6, 0.5, 0.3]).reshape([-1, 1])
print("####### input loss ######")
print(myloss)# 4) calculate curriculum constraints
# A = matrix(0, nrow=length(id), ncol=1)
# curriculum constraints matrix
A = np.zeros([len(id), 1])
A[:, 0] = np.array([0.1, 0.0, 0.4, 0.3, 0.5, 1.0])
# A[:, 0] = np.array([2.3, 2.2, 2.1, 2.0, 1.7, 1.5])
print("####### A matrix ######")
print("A: ", A)
c = 1.0
# c = 6.0# 5) optimize v with modality constraint (A)
# v0 = replicate(length(id),0)
v0 = np.repeat(0, len(id))
print("v0: ", v0)
# a small constant for optmization accuracy
tolerance = 1e-7
print("tolerance: ", tolerance)# tolerance = 0
# parameter in self-paced learning
lambda_var = 0.8333# paramaters
u1 = -1 * A  # -Av >= -c	i.e.	Av <= c# c1 = -1 * c - tolerance  # -Av >= -c	i.e.	Av <= c
c1 = c + tolerance# 三个约束
# v 大于等于 0
# v 小于等于 1
# A^T \times V <= c
# inequality means that it is to be non-negative.
cons = ({'type': 'ineq', 'fun': lambda v: v @ u1 + c1})# 定义目标函数
def objective_function(v):obj = v @ myloss - lambda_var * np.sum(v)return obj# 定义目标函数的梯度
def objective_gradient(v):grads = myloss - lambda_varreturn grads# 设置bounds
# bounds = tuple([(-tolerance, 1 + tolerance) for i in range(len(v0))])
bounds = tuple([(0, 1) for i in range(len(v0))])
# x0 = np.zeros([len(id)])
# res_SLSQP = minimize(objective_function, v0, method='SLSQP', jac=objective_gradient, constraints=cons, bounds=bounds)# res = minimize(objective_function, v0, method='SLSQP', constraints=cons, bounds=bounds)
print("###res_SLSQP###")
res_SLSQP = minimize(objective_function, v0, method='SLSQP', jac=objective_gradient, constraints=cons, bounds=bounds,options={"maxiter": 100, "disp": True})
print('最小值:', res_SLSQP.fun)
print('最优解:', res_SLSQP.x)
print('迭代终止是否成功:', res_SLSQP.success)
print('迭代终止原因:', res_SLSQP.message)
print("最终解是否满足先验课程知识: ", res_SLSQP.x @ u1 + c1 >= 0)print("###COBYLA###")
res_COBYLA = minimize(objective_function, v0, method='COBYLA', jac=objective_gradient, constraints=cons, bounds=bounds,options={"maxiter": 100, "disp": True})
print('最小值:', res_COBYLA.fun)
print('最优解:', res_COBYLA.x)
print('迭代终止是否成功:', res_COBYLA.success)
print('迭代终止原因:', res_COBYLA.message)
print("最终解是否满足先验课程知识: ", res_COBYLA.x @ u1 + c1 >= 0)# v_2 = np.array([1, 1, 1, 0.88, 0.47, 0])
v_2 = np.array([1, 0.91, 0.10, 0.00, 0.00, 1.00])
print('论文最优解:', v_2)
print("论文最小值:", objective_function(v_2))
print("论文最终解是否满足先验课程知识: ", v_2 @ u1 + c1 >= 0)

相关文章:

【论文阅读】Self-Paced Curriculum Learning

论文下载 代码 Supplementary Materials bib: INPROCEEDINGS{,title {Self-Paced Curriculum Learning},author {Lu Jiang and Deyu Meng and Qian Zhao and Shiguang Shan and Alexander Hauptmann},booktitle {AAAI},year {2015},pages {2694--2700} }1. 摘…...

C++简易线程池

原理说明&#xff1a; 1. 线程池创建时&#xff0c;指定线程池的大小thread_size。当有新的函数任务通过函数addFunction ()添加进来后&#xff0c;其中一个线程执行函数。一个线程一次执行一个函数。如果函数数量大与线程池数量&#xff0c;则后来的函数等待。 2. 线程池内部…...

【MATLAB】PSO粒子群优化LSTM(PSO_LSTM)的时间序列预测

有意向获取代码&#xff0c;请转文末观看代码获取方式~也可转原文链接获取~ 1 基本定义 PSO粒子群优化LSTM&#xff08;PSO-LSTM&#xff09;是一种将粒子群优化算法&#xff08;PSO&#xff09;与长短期记忆神经网络&#xff08;LSTM&#xff09;相结合的混合模型。该算法通过…...

产品经理学习-怎么写PRD文档

目录 瀑布流方法论介绍 产品需求文档&#xff08;PRD&#xff09;介绍 产品需求文档的基本要素 撰写产品需求文档 优先产品需求文档的特点 其他相关文档 瀑布流方法论介绍 瀑布流模型是一种项目的开发和管理的方法论&#xff0c;是敏捷的开发管理方式相对应的另一种方法…...

第3课 获取并播放音频流

本课对应源文件下载链接&#xff1a; https://download.csdn.net/download/XiBuQiuChong/88680079 FFmpeg作为一套庞大的音视频处理开源工具&#xff0c;其源码有太多值得研究的地方。但对于大多数初学者而言&#xff0c;如何快速利用相关的API写出自己想要的东西才是迫切需要…...

Spark编程实验四:Spark Streaming编程

目录 一、目的与要求 二、实验内容 三、实验步骤 1、利用Spark Streaming对三种类型的基本数据源的数据进行处理 2、利用Spark Streaming对Kafka高级数据源的数据进行处理 3、完成DStream的两种有状态转换操作 4、把DStream的数据输出保存到文本文件或MySQL数据库中 四…...

Flink去重计数统计用户数

1.数据 订单表&#xff0c;分别是店铺id、用户id和支付金额 "店铺id,用户id,支付金额", "shop-1,user-1,1", "shop-1,user-2,1", "shop-1,user-2,1", "shop-1,user-3,1", "shop-1,user-3,1", "shop-1,user…...

力扣:62. 不同路径(动态规划,附python二维数组的定义)

题目&#xff1a; 一个机器人位于一个 m x n 网格的左上角 &#xff08;起始点在下图中标记为 “Start” &#xff09;。 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角&#xff08;在下图中标记为 “Finish” &#xff09;。 问总共有多少条不同的路径&…...

2022年全球运维大会(GOPS深圳站)-核心PPT资料下载

一、峰会简介 GOPS 主要面向运维行业的中高端技术人员&#xff0c;包括运维、开发、测试、架构师等群体。目的在于帮助IT技术从业者系统学习了解相关知识体系&#xff0c;让创新技术推动社会进步。您将会看到国内外知名企业的相关技术案例&#xff0c;也能与国内顶尖的技术专家…...

8868体育助力意甲罗马俱乐部 迪巴拉有望付出

8868体育助力意甲罗马俱乐部 迪巴拉有望付出 意甲罗马俱乐部是8868体育合作球队之一&#xff0c;本赛季&#xff0c;在意甲第14轮的比赛中&#xff0c;罗马客场2-1战胜萨索洛&#xff0c;积分上升到意甲第4位。 有报道称&#xff0c;迪巴拉在对阵佛罗伦萨的比赛中受伤&#xff…...

java设计模式实战【策略模式+观察者模式+命令模式+组合模式,混合模式在支付系统中的应用】

引言 在代码开发的世界里&#xff0c;理论知识的重要性毋庸置疑&#xff0c;但实战经验往往才是知识的真正试金石。正所谓&#xff0c;“读万卷书不如行万里路”&#xff0c;理论的学习需要通过实践来验证和深化。设计模式作为软件开发中的重要理论&#xff0c;其真正的价值在…...

小程序wx:if 和hidden的区别?

在小程序中&#xff0c;wx:if 和 hidden 是用于条件渲染的两种不同方式。 选择使用哪种方式取决于具体情况。如果条件变化频繁或节点包含复杂的子节点&#xff0c;可以考虑使用 wx:if 进行条件渲染&#xff1b;如果条件变化较少且节点结构简单&#xff0c;可以使用 hidden 控制…...

自动驾驶学习笔记(二十三)——车辆控制模型

#Apollo开发者# 学习课程的传送门如下&#xff0c;当您也准备学习自动驾驶时&#xff0c;可以和我一同前往&#xff1a; 《自动驾驶新人之旅》免费课程—> 传送门 《Apollo开放平台9.0专项技术公开课》免费报名—>传送门 文章目录 前言 运动学模型 动力学模型 总结…...

Linux Shell 015-文本双向覆盖重定向工具tee

Linux Shell 015-文本双向覆盖重定向工具tee 本节关键字&#xff1a;Linux、Bash Shell、文本双向覆盖重定向工具 相关指令&#xff1a;tee、echo、cat tee介绍 tee工具是从标准输入读取并写入到标准输出和文件&#xff0c;即&#xff1a;双向覆盖重定向&#xff08;屏幕输出…...

【PyQt】(自定义类)QIcon派生,更易用的纯色Icon

嫌Qt自带的icon太丑&#xff0c;自己写了一个&#xff0c;主要用于纯色图标的自由改色。 当然&#xff0c;图标素材得网上找。 Qt原生图标与现代图标对比&#xff1a; 没有对比就没有伤害 Qt图标 网络素材图标 自定义类XJQ_Icon&#xff1a; from PyQt5.QtGui import QIc…...

【mysql】数据处理格式化、转换、判断

数据处理 判断是否超时&#xff0c;时间是否大于当前时间计算分钟数时间格式化处理如果数值类型进行转换字符类型字符拼接case-when代替if-else判断数据空&#xff08;特殊&#xff1a;含空数据、空字符处理&#xff09; select /*判断是否超时&#xff0c;时间是否大于当前…...

深入探索Java中的UDP网络通信机制

在网络通信中&#xff0c;UDP&#xff08;User Datagram Protocol&#xff0c;用户数据报协议&#xff09;是一种无连接的协议&#xff0c;它在某些情况下比TCP更适合&#xff0c;尤其是在要求速度快、对数据准确性要求相对较低的场景下。本文将介绍如何使用Java进行UDP网络通信…...

List常见方法和遍历操作

List集合的特点 有序&#xff1a; 存和取的元素顺序一致有索引&#xff1a;可以通过索引操作元素可重复&#xff1a;存储的元素可以重复 List集合的特有方法 Collection的方法List都继承了List集合因为有索引&#xff0c;所以有了很多操作索引的方法 ublic static void main…...

【基础篇】一、认识JVM

文章目录 1、虚拟机2、Java虚拟机3、JVM的整体结构4、Java代码的执行流程5、JVM的三大功能6、JVM的分类7、JVM的生命周期 1、虚拟机 虚拟机&#xff0c;Virtual Machine&#xff0c;一台虚拟的计算机&#xff0c;用来执行虚拟计算机指令。分为&#xff1a; 系统虚拟机&#x…...

DrGraph原理示教 - OpenCV 4 功能 - 颜色空间

前言 前段时间&#xff0c;甲方提出明确需求&#xff0c;让把软件国产化。稍微研究了一下&#xff0c;那就转QT开发&#xff0c;顺便把以前的功能代码重写一遍。 至于在Ubuntu下折腾QT、OpenCV安装事宜&#xff0c;网上文章很多&#xff0c;照猫画虎即可。 这个过程&#xff0…...

synchronized 学习

学习源&#xff1a; https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖&#xff0c;也要考虑性能问题&#xff08;场景&#xff09; 2.常见面试问题&#xff1a; sync出…...

逻辑回归:给不确定性划界的分类大师

想象你是一名医生。面对患者的检查报告&#xff08;肿瘤大小、血液指标&#xff09;&#xff0c;你需要做出一个**决定性判断**&#xff1a;恶性还是良性&#xff1f;这种“非黑即白”的抉择&#xff0c;正是**逻辑回归&#xff08;Logistic Regression&#xff09;** 的战场&a…...

MFC内存泄露

1、泄露代码示例 void X::SetApplicationBtn() {CMFCRibbonApplicationButton* pBtn GetApplicationButton();// 获取 Ribbon Bar 指针// 创建自定义按钮CCustomRibbonAppButton* pCustomButton new CCustomRibbonAppButton();pCustomButton->SetImage(IDB_BITMAP_Jdp26)…...

关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案

问题描述&#xff1a;iview使用table 中type: "index",分页之后 &#xff0c;索引还是从1开始&#xff0c;试过绑定后台返回数据的id, 这种方法可行&#xff0c;就是后台返回数据的每个页面id都不完全是按照从1开始的升序&#xff0c;因此百度了下&#xff0c;找到了…...

深入理解JavaScript设计模式之单例模式

目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式&#xff08;Singleton Pattern&#…...

Module Federation 和 Native Federation 的比较

前言 Module Federation 是 Webpack 5 引入的微前端架构方案&#xff0c;允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...

JVM暂停(Stop-The-World,STW)的原因分类及对应排查方案

JVM暂停(Stop-The-World,STW)的完整原因分类及对应排查方案,结合JVM运行机制和常见故障场景整理而成: 一、GC相关暂停​​ 1. ​​安全点(Safepoint)阻塞​​ ​​现象​​:JVM暂停但无GC日志,日志显示No GCs detected。​​原因​​:JVM等待所有线程进入安全点(如…...

Element Plus 表单(el-form)中关于正整数输入的校验规则

目录 1 单个正整数输入1.1 模板1.2 校验规则 2 两个正整数输入&#xff08;联动&#xff09;2.1 模板2.2 校验规则2.3 CSS 1 单个正整数输入 1.1 模板 <el-formref"formRef":model"formData":rules"formRules"label-width"150px"…...

使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度

文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...

Web中间件--tomcat学习

Web中间件–tomcat Java虚拟机详解 什么是JAVA虚拟机 Java虚拟机是一个抽象的计算机&#xff0c;它可以执行Java字节码。Java虚拟机是Java平台的一部分&#xff0c;Java平台由Java语言、Java API和Java虚拟机组成。Java虚拟机的主要作用是将Java字节码转换为机器代码&#x…...