循环生成对抗网络(CycleGAN)
一、说明
循环生成对抗网络(CycleGAN)是一种训练深度卷积神经网络以执行图像到图像翻译任务的方法。网络使用不成对的数据集学习输入和输出图像之间的映射。
二、基本介绍
CycleGAN 是图像到图像的翻译模型,就像Pix2Pix一样。Pix2Pix模型面临的主要挑战是训练所需的数据应该配对,即源域和目标域的图像应该位于相同的位置,并且两个域的图像数量也应该相同。
循环生成对抗网络(CycleGAN)是一种训练深度卷积神经网络以执行图像到图像翻译任务的方法。网络使用不成对的数据集学习输入和输出图像之间的映射。例如:从 SAR 生成 RGB 图像、从 RGB 生成多光谱图像、从卫星图像生成地图路线等。
该模型是 Pix2Pix 架构的扩展,涉及两个生成器模型和两个判别器模型的同时训练。除了 Pix2Pix 的功能之外,我们还可以使用不配对的数据集,并且还可以使用相同的模型反向转换图像(目标到源图像)。
三、模型架构
图 1. CycleGAN 架构概述:从卫星图像转换到地图路线域 [3]
要了解 GAN 的基础知识,可以参考Pix2Pix 指南。
该模型架构由两个生成器模型组成:一个生成器(Generator-A)用于生成第一个域(Domain-A)的图像,第二个生成器(Generator-B)用于生成第二个域(Domain-B)的图像。
- 域-B ->生成器-A -> 域-A
- 域-A ->生成器-B -> 域-B
每个生成器都有一个相应的判别器模型(判别器-A 和判别器-B)。鉴别器模型从域中获取真实图像并从生成器中获取生成的图像来预测它们是真还是假。
- 域-A ->鉴别器-A -> [真/假]
- 域-B -> 生成器-A ->判别器-A -> [真/假]
- 域-B ->鉴别器-B -> [真/假]
- 域-A -> 生成器-B ->判别器-B -> [真/假]
在 中arcgis.learn
,所有判别器和生成器都被分组为一个模型。
四、训练时loss是如何计算的?
用于训练生成器的损失由三部分组成:
- 对抗性损失:我们将对抗性损失应用于两个生成器,其中生成器尝试生成其域的图像,而其相应的判别器区分翻译样本和真实样本。生成器的目标是最小化这种损失,而相应的判别器则试图最大化这种损失。
- 循环一致性损失:它捕捉到了这样的直觉:如果我们将图像从一个域转换到另一个域并再次转换回来,我们应该到达我们开始的地方。因此,它计算原始图像和最终生成图像之间的 L1 损失,该图像应该看起来与原始图像相同。从两个方向进行计算:
- 正向循环一致性:域-B ->生成器-A -> 域-A ->生成器-B -> 域-B
- 后向循环一致性:Domain-A -> Generator-B -> Domain-B -> Generator-A -> Domain-A
- 身份丢失:它鼓励生成器保留输入和输出之间的颜色成分。这是通过向生成器提供目标域的图像作为输入并计算输入和生成图像之间的 L1 损失来完成的。
* Domain-A -> **Generator-A** -> Domain-A
* Domain-B -> **Generator-B** -> Domain-B
由于所有这些损失函数在获得高质量结果方面都发挥着关键作用。因此,这两个生成器模型都是通过所有这些损失函数的组合来优化的。
五、实施于arcgis.learn
首先,我们必须使用arcgis pro中的格式导出图像芯片,然后使用中的函数Export Tiles
创建一个databunchprepare_data
arcgis.learn
data = arcgis.learn.prepare_data(path=r"path/to/exported/data", dataset_type='CycleGAN')
要传递的重要参数是:
- 到
path
数据目录。我们需要遵循图2所示的目录结构。这里,“train_a”和“train_b”文件夹包含域A和B的图像。
图 2. 目录结构
- 为
dataset_type
“CycleGAN”。
创建数据束后,我们可以通过调用初始化 CycleGAN 对象
cyclegan_model = arcgis.learn.CycleGAN(data)
与其他一些模型不同,我们从头开始训练 CycleGAN,某些初始时期的学习率为 0.0002,然后在下一个时期将学习率线性衰减到零。
然后我们可以继续基本的 arcgis.learn 工作流程。有关 API 和模型的更多信息,请访问API 参考。
参考
[1] Jun-Yan Zhu,Taesung Park,Phillip Isola,Alexei A. Efros,“使用循环一致对抗网络的不配对图像到图像翻译”,2017;arXiv:1703.10593。
[2] Jason Brownlee:Cyclegan 教程。访问日期:2020 年 9 月 29 日。
[3]。康宇豪、高松和罗伯特·E·罗斯。“使用生成对抗网络传输多尺度地图样式。” 国际制图杂志 5,no。2-3(2019):115-141。
相关文章:

循环生成对抗网络(CycleGAN)
一、说明 循环生成对抗网络(CycleGAN)是一种训练深度卷积神经网络以执行图像到图像翻译任务的方法。网络使用不成对的数据集学习输入和输出图像之间的映射。 二、基本介绍 CycleGAN 是图像到图像的翻译模型,就像Pix2Pix一样。Pix2Pix模型面临…...
数组--53.最大子数组和/medium
53.最大子数组和 1、题目2、题目分析3、解题步骤4、复杂度最优解代码示例5、抽象与扩展 1、题目 给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。 子数组 是数组中的一个连…...
centos 编译安装 python 和 openssl
安装环境: centos 7.9 : python 3.10.5 和 openssl 3.0.12 centos 6.10 : python 3.10.5 和 openssl 1.1.1 两个环境都能安装成功,可以正常使用。 安装 openssl 下载地址 下载后解压,进入到解压目录 执行…...

【nodejs】前后端身份认证
前后端身份认证 一、web开发模式 服务器渲染,前后端分离。 不同开发模式下的身份认证: 服务端渲染推荐使用Session认证机制前后端分离推荐使用JWT认证机制 二、session认证机制 1.HTTP协议的无状态性 了解HTTP协议的无状态性是进一步学习Session认…...

数据结构【线性表篇】(三)
数据结构【线性表篇】(三) 文章目录 数据结构【线性表篇】(三)前言为什么突然想学算法了?为什么选择码蹄集作为刷题软件? 目录一、双链表二、循环链表三、静态链表 结语 前言 为什么突然想学算法了? > 用较为“官方…...

Python装饰器的专业解释
装饰器,其实是用到了闭包的原理来进行操作的。 单个装饰器: 以下是一个简单的例子: def outer(func):print("OUTER enter ...")def wrapper(*args, **kwargs):print("调用之前......")result func(*args, **kwargs)p…...

vue3框架笔记
Vue Vue 是一个渐进式的前端开发框架,很容易上手。Vue 目前的版本是 3.x,但是公司中也有很多使用的是 Vue2。Vue3 的 API 可以向下兼容 2,Vue3 中新增了很多新的写法。我们课程主要以 Vue3 为主 官网 我们学习 Vue 需要转变思想࿰…...

pytest --collectonly 收集测试案例
pytest --collectonly 是一条命令行指令,用于在运行 pytest 测试时仅收集测试项而不执行它们。它会显示出所有可用的测试项列表,包括测试模块、测试类和测试函数,但不会执行任何实际的测试代码。 这个命令对于查看项目中的测试结构和确保所有…...

dev express 15.2图表绘制性能问题(dotnet绘图表)
dev express 15.2 绘制曲线 前端代码 <dxc:ChartControl Grid.Row"1"><dxc:XYDiagram2D EnableAxisXNavigation"True"><dxc:LineSeries2D x:Name"series" CrosshairLabelPattern"{}{A} : {V:F2}"/></dxc:XYDi…...

WorkPlus:领先的IM即时通讯软件,打造高效沟通协作新时代
在当今快节奏的商业环境中,高效沟通和协作是企业成功的关键。而IM即时通讯软件作为实现高效沟通的利器,成为了现代企业不可或缺的一部分。作为一款领先的IM即时通讯软件,WorkPlus以其卓越的性能和独特的功能,助力企业打造高效沟通…...

学习SpringCloud微服务
SpringCloud 微服务单体框架微服务框架SpringCloud微服务拆分微服务差分原则拆分商品服务拆分购物车服务拆分用户服务拆分交易服务拆分支付服务服务调用RestTemplate远程调用 微服务拆分总结 服务治理注册中心Nacos注册中心服务注册服务发现 OpenFeign实现远程调用快速入门引入…...

WPF 显示气泡提示框
气泡提示框应用举例 有时候在我们开发的软件经常会遇到需要提示用户的地方,为了让用户更直观,快速了解提示信息,使用简洁、好看又方便的气泡提示框显得更加方便,更具人性化。如下面例子:(当用户未输入账号时࿰…...

L1-062:幸运彩票
题目描述 彩票的号码有 6 位数字,若一张彩票的前 3 位上的数之和等于后 3 位上的数之和,则称这张彩票是幸运的。本题就请你判断给定的彩票是不是幸运的。 输入格式: 输入在第一行中给出一个正整数 N(≤ 100)。随后 N 行…...

python+vue高校体育器材管理信息系统5us4g
优秀的高校体育馆场地预订系统能够更有效管理体育馆场地预订业务规范,帮助管理者更加有效管理场地的使用,有效提高场地使用效率,可以帮助提高克服人工管理带来的错误等不利因素,所以一个优秀的高校体育馆场地预订系统能够带来很大…...

10 款顶级的免费U盘数据恢复软件(2024 年 更新)
你曾经遇到过U盘无法访问的情况吗?现在我们教你如何恢复数据。 在信息时代,数据丢失往往会造成巨大的困扰。而USB闪存驱动器作为我们常用的数据存储设备,其重要性不言而喻。但是,U盘也可能会出现各种问题,如无法访问、…...
C# json 转匿名对象及C#关键字的处理
调用第三方接口,返回的json字符串,为了方便使用转为C#匿名对象: /// <summary>/// json转为匿名对象/// </summary>/// <typeparam name"T"></typeparam>/// <param name"json"></para…...
关于彻底通过外网,自动批量下载Python的pip依赖包后到企业内网重安装的步骤-比单个包的要方便多了。
关于彻底通过外网,自动批量下载Python包后到企业内网重安装的步骤 前言: 哎,在本人的前面的博客中,分享的方法可能是不通用的。因为在一次实践中发现它不能总是通用且麻烦。所以本次记录分享一个更方便快速的方式。 上期前言&am…...
Oracle T4-4小型机上配置Ldom部署rac
Ldom控制域配置 (两台主机一样,以hydb1为例) roothydb1 # ldm add-vds primary-vds0 primary roothydb1 # ldm add-vcc port-range5000-5100 primary-vcc0 primary roothydb1 # ldm add-vsw net-devigb0 primary-vsw0 primary roothydb1 # ldm add-vsw net-devixgbe…...
【2023Hadoop大数据技术应用期末复习】填空题题型整理
大数据的 4V 特征包含()()()() 答案:大量、多样、高速、价值Hadoop 三大组件包含()()() 答案&…...

劫持 PE 文件:新建节表并插入指定 DLL 文件
PE格式简介 PE(Portable Executable)格式,是微软Win32环境可移植可执行文件(如exe、dll、vxd、sys和vdm等)的标准文件格式。PE格式衍生于早期建立在VAX(R)VMS(R)上的COFF(Common Object File Format)文件格式。 Portable 是指对于不同的Windows版本和不同的CPU类型上…...
脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)
一、数据处理与分析实战 (一)实时滤波与参数调整 基础滤波操作 60Hz 工频滤波:勾选界面右侧 “60Hz” 复选框,可有效抑制电网干扰(适用于北美地区,欧洲用户可调整为 50Hz)。 平滑处理&…...

el-switch文字内置
el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...

高等数学(下)题型笔记(八)空间解析几何与向量代数
目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...
Spring AI与Spring Modulith核心技术解析
Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制
在数字化浪潮席卷全球的今天,数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具,在大规模数据获取中发挥着关键作用。然而,传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时,常出现数据质…...

中医有效性探讨
文章目录 西医是如何发展到以生物化学为药理基础的现代医学?传统医学奠基期(远古 - 17 世纪)近代医学转型期(17 世纪 - 19 世纪末)现代医学成熟期(20世纪至今) 中医的源远流长和一脉相承远古至…...

无人机侦测与反制技术的进展与应用
国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机(无人驾驶飞行器,UAV)技术的快速发展,其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统,无人机的“黑飞”&…...

VisualXML全新升级 | 新增数据库编辑功能
VisualXML是一个功能强大的网络总线设计工具,专注于简化汽车电子系统中复杂的网络数据设计操作。它支持多种主流总线网络格式的数据编辑(如DBC、LDF、ARXML、HEX等),并能够基于Excel表格的方式生成和转换多种数据库文件。由此&…...

Linux 下 DMA 内存映射浅析
序 系统 I/O 设备驱动程序通常调用其特定子系统的接口为 DMA 分配内存,但最终会调到 DMA 子系统的dma_alloc_coherent()/dma_alloc_attrs() 等接口。 关于 dma_alloc_coherent 接口详细的代码讲解、调用流程,可以参考这篇文章,我觉得写的非常…...

STM32标准库-ADC数模转换器
文章目录 一、ADC1.1简介1. 2逐次逼近型ADC1.3ADC框图1.4ADC基本结构1.4.1 信号 “上车点”:输入模块(GPIO、温度、V_REFINT)1.4.2 信号 “调度站”:多路开关1.4.3 信号 “加工厂”:ADC 转换器(规则组 注入…...