当前位置: 首页 > news >正文

【数值分析】LU分解解Ax=b,matlab自己编程实现

LU分解(直接三角分解,Doolittle分解)

A x = b , A = L U Ax=b \,\,,\,\, A=LU Ax=b,A=LU
{ L y = b U x = y \begin{cases} Ly=b \\ Ux=y \end{cases} {Ly=bUx=y
矩阵 L {L} L 的对角元素为 1 {1} 1 ,矩阵 U {U} U 的第一行和 A {A} A 相同。
步骤:
1. 矩阵 L 的对角元素为 1 ,矩阵 U 的第一行和 A 相同。 2. 迭代 , j = 1 , 2 , ⋯ n − 1 算 L 的第 j 列 , L i , j = A i , j − ∑ r = 1 j − 1 L i , r U r , j U j , j , i = j + 1 , j + 2 , ⋯ , n 算 U 的第 j + 1 行 , U j + 1 , k = A j + 1 , k − ∑ r = 1 j L j + 1 , r U r , k L j + 1 , j + 1 , k = j + 1 , j + 2 , ⋯ , n 3. 回代 , y i = b i − ∑ j = 1 i − 1 L i , j y j , i = 1 , 2 , ⋯ , n x i = y i − ∑ j = i + 1 n x j ⋅ U i , j U i , i , i = n , n − 1 , ⋯ , 1 \begin{align*} 1.& 矩阵 L 的对角元素为 1 ,矩阵U 的第一行和A相同。 \\ \\ 2. & 迭代 \,\,,\,\, j=1,2, \cdots n-1 \\ \\ &算L的第j列 \,\,,\,\, L_{i,j}= \frac{A_{i,j}- \sum_{r=1}^{j-1}L_{i,r}U_{r,j}}{U_{j,j}},i=j+1,j+2,\cdots ,n \\ \\ &算U的第j+1行 \,\,,\,\, U_{j+1,k}= \frac{A_{j+1,k}- \sum_{r=1}^{ j}L_{j+1,r}U_{r,k}}{L_{j+1,j+1}} ,k=j+1,j+2,\cdots ,n \\ \\ 3.& 回代 \,\,,\,\, \\ \\ & y_i= b_i- \sum_{j=1}^{ i-1}L_{i,j}y_j,i=1,2,\cdots ,n \\ \\ &x_i= \frac{y_i- \sum_{j=i+1}^{ n}x_j \cdot U_{i,j}}{U_{i,i}} \,\,,\,\, i=n,n-1, \cdots ,1 \end{align*} 1.2.3.矩阵L的对角元素为1,矩阵U的第一行和A相同。迭代,j=1,2,n1L的第j,Li,j=Uj,jAi,jr=1j1Li,rUr,j,i=j+1,j+2,,nU的第j+1,Uj+1,k=Lj+1,j+1Aj+1,kr=1jLj+1,rUr,k,k=j+1,j+2,,n回代,yi=bij=1i1Li,jyj,i=1,2,,nxi=Ui,iyij=i+1nxjUi,j,i=n,n1,,1
matlab实现

%% Ax=b例子
A = [16 -12 2 4;12 -8 6 10;3 -13 9 23;-6 14 1 -28];
b = [17 36 -49 -54]';
[x,L,U] = LUsolve(A,b)%% LU分解解Ax=b
% 输入方阵A,向量b
% 输出解x,L、U矩阵
function [x,L,U] = LUsolve(A,b)n = size(A);L = eye(n);U(1,[1:n]) = A(1,[1:end]);for j = 1:n-1 % 对U是行号,对L是列号for i = j+1:n % 算L第i行j列L(i,j) = A(i,j);for r = 1:j-1L(i,j) = L(i,j)- L(i,r)*U(r,j);endL(i,j) = L(i,j)/U(j,j);endfor k = j+1:n % 算U第j+1行k列U(j+1,k) = A(j+1,k);for r = 1:jU(j+1,k) = U(j+1,k)-L(j+1,r)*U(r,k);endU(j+1,k) = U(j+1,k)/L(j+1,j+1);endend% 回代for i = 1:ny(i) = b(i);for j = 1:i-1y(i) = y(i)-L(i,j)*y(j);endendfor i=n:-1:1 x(i) = y(i);for j=n:-1:i+1x(i) = x(i)-U(i,j)*x(j);endx(i) = x(i)/U(i,i);endx = x';
end

相关文章:

【数值分析】LU分解解Ax=b,matlab自己编程实现

LU分解(直接三角分解,Doolittle分解) A x b , A L U Axb \,\,,\,\, ALU Axb,ALU { L y b U x y \begin{cases} Lyb \\ Uxy \end{cases} {LybUxy​ 矩阵 L {L} L 的对角元素为 1 {1} 1 ,矩阵 U {U} U 的第一行和 A {A} A …...

华为HCIE-Datacom课程介绍

厦门微思网络HCIE-Datacom课程介绍 一、认证简介 HCIE-Datacom(Huawei Certified ICT Expert-Datacom)认证是华为认证体系中的顶级认证,HCIE-Datacom认证定位具备坚实的企业网络跨场景融合解决方案理论知识,能够使用华为数通产品…...

QT(C++)-QTableWight添加行和删除空行

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 1、前言2、QTableWidget的添加行3、删除行 1、前言 最近要用QT开发项目,对QT不是很熟,就根据网上的查到的知识和自己的摸索,将一…...

软件测试/测试开发丨Python 面向对象编程思想

面向对象是什么 Python 是一门面向对象的语言面向对象编程(OOP):Object Oriented Programming 所谓的面向对象,就是在编程的时候尽可能的去模拟真实的现实世界,按照现实世界中的逻辑去处理问题,分析问题中…...

一次降低进程IO延迟的性能优化实践——基于block层bfq调度器

如果有个进程正频繁的读写文件,此时你vim查看一个新文件,将会出现明显卡顿。即便你vim查看的文件只有几十M,也可能会出现卡顿。相对的,线上经常遇到IO敏感进程偶发IO超时问题。这些进程一次读写的文件数据量很少,正常几…...

C语言易错知识点十(指针(the final))

❀❀❀ 文章由不准备秃的大伟原创 ❀❀❀ ♪♪♪ 若有转载,请联系博主哦~ ♪♪♪ ❤❤❤ 致力学好编程的宝藏博主,代码兴国!❤❤❤ 许久不见,甚是想念,真的是时间时间,你慢些吧,不能再让头发变秃…...

React 18 新增的钩子函数

React 18 引入了一些新的钩子函数,用于处理一些常见的场景和问题。以下是 React 18 中引入的一些新钩子函数以及它们的代码示例和使用场景: useTransition: 代码示例:import { useTransition } from react;function MyComponent()…...

安装与部署Hadoop

一、前置安装准备1、机器2、java3、创建hadoop用户 二、安装Hadoop三、环境配置1、workers2、hadoop-env.sh3、core-site.xml4、hdfs-site.xml5、linux中Hadoop环境变量 四、启动hadoop五、验证 一、前置安装准备 1、机器 主机名ip服务node1192.168.233.100NameNode、DataNod…...

MySQL 8.0 InnoDB Tablespaces之General Tablespaces(通用表空间/一般表空间)

文章目录 MySQL 8.0 InnoDB Tablespaces之General Tablespaces(通用表空间/一般表空间)General tablespaces(通用表空间/一般表空间)通用表空间的功能通用表空间的限制 创建通用表空间(一般表空间)创建语法…...

循环生成对抗网络(CycleGAN)

一、说明 循环生成对抗网络(CycleGAN)是一种训练深度卷积神经网络以执行图像到图像翻译任务的方法。网络使用不成对的数据集学习输入和输出图像之间的映射。 二、基本介绍 CycleGAN 是图像到图像的翻译模型,就像Pix2Pix一样。Pix2Pix模型面临…...

数组--53.最大子数组和/medium

53.最大子数组和 1、题目2、题目分析3、解题步骤4、复杂度最优解代码示例5、抽象与扩展 1、题目 给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。 子数组 是数组中的一个连…...

centos 编译安装 python 和 openssl

安装环境: centos 7.9 : python 3.10.5 和 openssl 3.0.12 centos 6.10 : python 3.10.5 和 openssl 1.1.1 两个环境都能安装成功,可以正常使用。 安装 openssl 下载地址 下载后解压,进入到解压目录 执行&#xf…...

【nodejs】前后端身份认证

前后端身份认证 一、web开发模式 服务器渲染,前后端分离。 不同开发模式下的身份认证: 服务端渲染推荐使用Session认证机制前后端分离推荐使用JWT认证机制 二、session认证机制 1.HTTP协议的无状态性 了解HTTP协议的无状态性是进一步学习Session认…...

数据结构【线性表篇】(三)

数据结构【线性表篇】(三) 文章目录 数据结构【线性表篇】(三)前言为什么突然想学算法了?为什么选择码蹄集作为刷题软件? 目录一、双链表二、循环链表三、静态链表 结语 前言 为什么突然想学算法了? > 用较为“官方…...

Python装饰器的专业解释

装饰器,其实是用到了闭包的原理来进行操作的。 单个装饰器: 以下是一个简单的例子: def outer(func):print("OUTER enter ...")def wrapper(*args, **kwargs):print("调用之前......")result func(*args, **kwargs)p…...

vue3框架笔记

Vue Vue 是一个渐进式的前端开发框架,很容易上手。Vue 目前的版本是 3.x,但是公司中也有很多使用的是 Vue2。Vue3 的 API 可以向下兼容 2,Vue3 中新增了很多新的写法。我们课程主要以 Vue3 为主 官网 我们学习 Vue 需要转变思想&#xff0…...

pytest --collectonly 收集测试案例

pytest --collectonly 是一条命令行指令,用于在运行 pytest 测试时仅收集测试项而不执行它们。它会显示出所有可用的测试项列表,包括测试模块、测试类和测试函数,但不会执行任何实际的测试代码。 这个命令对于查看项目中的测试结构和确保所有…...

dev express 15.2图表绘制性能问题(dotnet绘图表)

dev express 15.2 绘制曲线 前端代码 <dxc:ChartControl Grid.Row"1"><dxc:XYDiagram2D EnableAxisXNavigation"True"><dxc:LineSeries2D x:Name"series" CrosshairLabelPattern"{}{A} : {V:F2}"/></dxc:XYDi…...

WorkPlus:领先的IM即时通讯软件,打造高效沟通协作新时代

在当今快节奏的商业环境中&#xff0c;高效沟通和协作是企业成功的关键。而IM即时通讯软件作为实现高效沟通的利器&#xff0c;成为了现代企业不可或缺的一部分。作为一款领先的IM即时通讯软件&#xff0c;WorkPlus以其卓越的性能和独特的功能&#xff0c;助力企业打造高效沟通…...

学习SpringCloud微服务

SpringCloud 微服务单体框架微服务框架SpringCloud微服务拆分微服务差分原则拆分商品服务拆分购物车服务拆分用户服务拆分交易服务拆分支付服务服务调用RestTemplate远程调用 微服务拆分总结 服务治理注册中心Nacos注册中心服务注册服务发现 OpenFeign实现远程调用快速入门引入…...

变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析

一、变量声明设计&#xff1a;let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性&#xff0c;这种设计体现了语言的核心哲学。以下是深度解析&#xff1a; 1.1 设计理念剖析 安全优先原则&#xff1a;默认不可变强制开发者明确声明意图 let x 5; …...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战

前言 现在我们有个如下的需求&#xff0c;设计一个邮件发奖的小系统&#xff0c; 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式&#xff08;Decorator Pattern&#xff09;允许向一个现有的对象添加新的功能&#xff0c;同时又不改变其…...

超短脉冲激光自聚焦效应

前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应&#xff0c;这是一种非线性光学现象&#xff0c;主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场&#xff0c;对材料产生非线性响应&#xff0c;可能…...

反向工程与模型迁移:打造未来商品详情API的可持续创新体系

在电商行业蓬勃发展的当下&#xff0c;商品详情API作为连接电商平台与开发者、商家及用户的关键纽带&#xff0c;其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息&#xff08;如名称、价格、库存等&#xff09;的获取与展示&#xff0c;已难以满足市场对个性化、智能…...

在rocky linux 9.5上在线安装 docker

前面是指南&#xff0c;后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...

Docker 运行 Kafka 带 SASL 认证教程

Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明&#xff1a;server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...

基于当前项目通过npm包形式暴露公共组件

1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹&#xff0c;并新增内容 3.创建package文件夹...

[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?

论文网址&#xff1a;pdf 英文是纯手打的&#xff01;论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误&#xff0c;若有发现欢迎评论指正&#xff01;文章偏向于笔记&#xff0c;谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...

【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力

引言&#xff1a; 在人工智能快速发展的浪潮中&#xff0c;快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型&#xff08;LLM&#xff09;。该模型代表着该领域的重大突破&#xff0c;通过独特方式融合思考与非思考…...

从零实现STL哈希容器:unordered_map/unordered_set封装详解

本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说&#xff0c;直接开始吧&#xff01; 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...