【时钟】分布式时钟HLC|Logical Time|Vector Clock|True Time
目录
简略
详细
附录
1 分布式系统不能使用NTP的原因
简略
分布式系统中不同于单机系统不能使用NTP(网络时间协议(Network Time Protocol))来获取时间,所以我们需要一个特别的方式来获取分布式系统中的时间,mvcc也是使用time保证读写相互不影响
Logical Time
使用 接收到的消息内的时间和自己的时间中最新的那个。
各个节点发送消息时附带自己的时间Ci,对方收到之后和自己的时间Cj 比对,选择大的时间更新为自己的时间Cj = max{Cj,Ci}.
Vector Clock
接收到的消息有所有节点的“时间戳”集合,每个时间戳都比本地的集合对应节点的大,就用对方的,都比本地的节点小就用自己的,不是全部都大或者都小就裁决。
VectorClock一个集合内包含所有节点的“时间戳”:{Node1:0,Node2:2,Node3:3.......}(这个时间戳并不是物理意义上的时间而是由程序赋予的逻辑计数(count)),收发消息时比对和更新自身VectorClock:
a:本机:{0,0,1} 消息:{0,1,2}。消息的每个节点的count都大于等于本机的,那么舍弃本机,同步消息
b:本机:{0,1,2} 消息:{0,1,1}。消息的每个节点的count都小于等于本机的,那么舍弃消息,保留本机
c:本机:{0,3,1} 消息:{0,1,2}。出现冲突,有的大,有的小,无法判断出来到底谁是最新版本。就要进行冲突仲裁。
True Time
需要专用硬件支持
Google Spanner里面,通过引入True Time来解决了分布式时间问题。Spanner通过使用GPS + Atomic Clock来对集群的机器进行校时,精度误差范围能控制在ms级别. 需要专用硬件支持
Hybrid Logic Clock(HLC/混合逻辑时钟)
HLC存储两部分信息:本地时钟(物理部分)l,计数器(逻辑部分)c
本地时钟部分l=集群节点的本地时钟的最大值(每次进行事务通信时更新这部分信息)
计数器部分c=每次事件或者消息通信时++(累加),类似逻辑时钟里每次事件都++(累加)。
HLC比较大小时,先用比较l部分,如果l相等再看c是否为零。
详细
摘抄自:分布式系统中的时间 - https://www.jianshu.com/p/18f063573aae
Logical Time
本质是通过事件发生的顺序,通过相互通信更新自己的时间,即通过a->b 根据通信得到C(a) > C(b);
每个进程Pi维护一个本地计数器Ci,相当于logical clocks,按照以下的规则更新Ci
1 每次执行一个事件(例如通过网络发送消息,或者将消息交给应用层,或者其它的一些内部事件)之前,将Ci加1
2 当Pi发送消息m给Pj的时候,在消息m上附着上Ci
3 当接收进程Pj接收到Pi的发送的消息时,更新自己的Cj = max{Cj,Ci}
未解决问题:我们不能通过C(a) > C(b) 得出a->b,不能使用真实时间进行事务查询
Vector Clock
VectorClock是一种用向量来表示偏序关系的逻辑时钟,从数据结构上可以理解为一个集合内包含所有节点的“时间戳”,当然这个时间戳并不是物理意义上的时间(也有些实践会同时加入timestamps以解决冲突问题),而是由程序赋予的逻辑计数(count),{Node1:0,Node2:2,Node3:3.......},如果我们已经统一了向量内的位置对应的node,那么时钟可以直接用一个{0,2,3}来表示。
对于每一个分布式存储的对象副本都有这样一个时间戳,那么存在一下几种关系:
a:本机:{0,0,1} 消息:{0,1,2}。消息的每个节点的count都大于等于本机的,那么舍弃本机,同步消息
b:本机:{0,1,2} 消息:{0,1,1}。消息的每个节点的count都小于等于本机的,那么舍弃消息,保留本机
c:本机:{0,3,1} 消息:{0,1,2}。出现冲突,有的大,有的小,无法判断出来到底谁是最新版本。就要进行冲突仲裁。
ps:vector clock类似于quorum协议,更新的时候将本机vector clock与事务vector clock进行对比,根据规则进行更新
未解决问题:不能使用真实时间进行事务查询
True Time
前面我们说了,NTP是有误差的,而且NTP还可能出现时间回退的情况,所以我们不能直接依赖NTP来确定一个事件发生的时间。在Google Spanner里面,通过引入True Time来解决了分布式时间问题。Spanner通过使用GPS + Atomic Clock来对集群的机器进行校时,精度误差范围能控制在ms级别,通过提供一套TrueTime API给外面使用。
TrueTime API很简单,只有三个函数:
MethodReturn
TT.now()TTinterval: [earliest, latest]
TT.after(t)true if t has definitely passed
TT.before(t)true if t has definitely not arrived
首先now得到当前的一个时间区间,spanner不能得到精确的一个时间点,只能得到一段区间,但这个区间误差范围很小,也就是ms级别,我们用ε来表示,也就是[t - ε, t + ε]这个范围,
假设事件a发生绝对时间为tt.a,那么我们只能知道tt.a.earliest <= tt.a <= tt.a.latest, 所以对于另一个事件b,只要tt.b.earliest > tt.a.latest,我们就能确定b一定是在a之后发生的,也就是说,我们需要等待大概2ε的事件才能去提交b,这个就是spanner里面说的commit wait time,保证误差时间消除掉。
未解决问题:需要专用硬件支持
Hybrid Logic Clock
混合逻辑时钟HLC存储两部分信息,一部分取值来源于本地时钟(物理部分)l,另一部分取值来自于计数器(逻辑部分)c。
来源于物理的部分,里面保存的其实是当前所有参与节点的本地时钟的最大值(每次进行事务通信时更新这部分信息),另一部分则是每次事件或者消息通信时++(累加),类似逻辑时钟里每次事件都++(累加)。
HLC将这两部分称为l和c。混合逻辑时钟比较大小时,先用比较l部分,如果相等再看c是否为零。
混合逻辑时钟HLC的算法描述如下:
本地事件或者发送消息时:
如果本地时钟(pt)大于当前的混合逻辑时钟的l,则将l更新成本地时钟,将c清零。
否则,l保持不变,将c加1。
if pt.j > l.j {
l.j = pt.j
c.j = 0
} else {
l.j = l.j
c.j := c.j
}
return l.j c.j
收到消息时,l 等于(当前的逻辑时钟的l、机器的本地时钟pt、收到消息里面带的l)三者中的最大值。
如果l部分是更新为本地时钟了,则将c清零。(保证HLC最大,如果本地时钟最大则重置HLC.c=0)
否则,c取较大的那个l对应到的c加1。
l'.j = l.j;
l.j = max(l'.j, l.m, pt.j);
if l.j = l'.j = m.j then c.j = max(c.j, c.m) + 1
else if l.j = l'.j then c.j = c.j + 1
else if l.j = l.m then c.j = c.m + 1
else c.j = 0
return l.j c.j
各节点相互通信的最终结果是,节点的“本地时钟”的物理部分,最终记录的是所有参与者中最大的本地时钟。这里有一个问题是由于HLC是一个 相对的时间所以当集群中有一台机器时间快了的话,所有时间都提前了,另外这个时间不是一个True Time,这样 导致snapshot读的时间和整体系统运行时间不一致
那么HLC怎么实现snapshot 读呢?我们将HLC作为数据的version,假设e和f事件发生成同一节点上,l.e < l.f ,我们引入一个虚拟事件g,l.e+1 <= l.g <= l.f ,并且 c.g = 0,这样的虚拟事件肯定是能找到的,并且引入一个虚构事件并不影响真实事件发生的先后关系。注意了!这个虚拟事件的时钟其实是可以跟全局的节点比较时序的(l.g, 0) ! 也就意味着,我们可以拿一个本地时钟去确定一个快照了!我们读取HLC<=HLC.g的数据即可
快照是只要happens before我的,我一定能够看到。混合逻辑时钟通过保留了物理时钟部分,使得拿到'全局'的时间戳成为可能,而逻辑时钟里面happens before的因果关系仍然可以保留。
Timestamp Oracle(与Tidb 使用raft来实现时间一致,保证性能呢最够好,保证能读到数据即可,使用raft同步一写多读的话性能上会更好点)
无论上面的Ture Time还是Hybrid Logic Time,都是为了在分布式情况下获取全局唯一时间,如果我们整个系统不复杂,而且没有spanner那种跨全球的需求,有时候一台中心授时服务没准就可以了。
在GooglePercolator系统这,他们就提到使用了一个timestamp oracle(TSO)的服务来提供统一的授时服务,为啥叫oracle,我猜想可能底层用的就是oracle数据库。。。
使用TSO的好处在于因为只有一个中心授时,所以我们一定能确定所有时间的时间,但TSO需要关注几个问题:
网络延时,因为所有的事件都需要从TSO获取时间,所以TSO的场景通常都是小集群,不能是那种全球级别的数据库。
性能,TSO是一个非常高频的操作,但鉴于它只干一件事情,就是授时,通常一个TSO每秒都能支持1m+ 以上的QPS,而这个对很多应用来说是绰绰有余的。
容错,TSO是一个单点,所以不得不考虑容错,而这个现在基于zookeeper,etcd也不是特别困难的事情。
所以,如果我们没法实现TrueTime,同时又觉得HLC太复杂,但又想获取全局时间,TSO没准是一个很好的选择,因为它足够简单高效。
TSO方案
作者:羊吃白菜
链接:https://www.jianshu.com/p/18f063573aae
Hybrid Logical Clock (HLC) (sergeiturukin.com)
References
- http://www.cse.buffalo.edu/tech-reports/2014-04.pdf
- Distributed systems for fun and profit
- CS 417 Documents
- pt, for physical time
- l, logical, holds maximumptheard so far
- c, captures causality
附录
1 分布式系统不能使用NTP的原因
NTP是网络时间协议(Network Time Protocol)的缩写,这是一种网络协议,用于同步计算机的时钟与世界统一的时间。通常,单个计算机或网络内的多台计算机可以使用NTP服务器来校准其系统时钟,保持与统一时间(例如,UTC,协调世界时)的一致性,减少时间误差。
但是,在分布式系统中,仅仅依赖NTP来同步时间可能不足够,因为:
1. 分布式系统跨越广泛的地理位置,网络延迟和变化可以造成同步的不精确。
2. NTP无法确保绝对的时钟同步一致性,通常会有毫秒级别的误差,这对于需要高精度时钟同步的分布式系统可能是不可接受的。
3. 分布式系统中的某些算法和应用可能需要比NTP更强的时间协调机制,比如逻辑时钟或向量时钟,它们能够提供系统事件的顺序一致性而不仅仅是时间同步。
因此,虽然NTP可以在分布式系统中提供基本的时钟同步,但它可能不足以满足所有分布式系统所需的精确时间同步要求。复杂的分布式系统可能会采用额外的协议和技术,如真实时间时钟(RTCs)、时钟同步算法(比如Google的TrueTime API),以及各种容错机制来更准确地同步各个节点的时钟。
相关文章:

【时钟】分布式时钟HLC|Logical Time|Vector Clock|True Time
目录 简略 详细 附录 1 分布式系统不能使用NTP的原因 简略 分布式系统中不同于单机系统不能使用NTP(网络时间协议(Network Time Protocol))来获取时间,所以我们需要一个特别的方式来获取分布式系统中的时间,mvcc也是使用time保证读…...

人工智能AI与3D视觉技术的结合正在引领新一代移动机器人的革新
随着科技的飞速发展,人工智能AI与3D视觉技术的结合正在引领新一代移动机器人的革新。富唯智能移动机器人,以其独特的3D视觉技术,赋予了移动机器人一双“智慧之眼”,从而为现代工业自动化带来了前所未有的突破。 富唯智能移动机器…...

NSSCTF 简单包含
开启环境: 使用POST传flag,flag目录/var/www/html/flag.php 先使用post来尝试读取该flag.php 没反应: 查看一下源码index.php,看有什么条件 base64解密: <?php$path $_POST["flag"];if (strlen(file_get_contents(php://input)) <…...
FlinkSQL处理Canal-JSON数据
背景信息 Canal是一个CDC(ChangeLog Data Capture,变更日志数据捕获)工具,可以实时地将MySQL变更传输到其他系统。Canal为变更日志提供了统一的数据格式,并支持使用JSON或protobuf序列化消息(Canal默认使用…...

玩转贝启科技BQ3588C开源鸿蒙系统开发板 —— DevEco Studio下载与安装
一、下载DevEco Studio IDE开发工具 1. 登录鸿蒙官网 网址为: 华为HarmonyOS智能终端操作系统官网 | 应用设备分布式开发者生态 页面如下: 2. 搜索“DevEco Studio IDE” 点击右上角的“请输入关键词”,在其中搜索“DevEc…...

大模型上下文长度的超强扩展:从LongLora到LongQLora
前言 本文一开始是《七月论文审稿GPT第2版:从Meta Nougat、GPT4审稿到Mistral、LongLora Llama》中4.3节的内容,但考虑到 一方面,LongLora的实用性较高二方面,为了把LongLora和LongQLora更好的写清楚,而不至于受篇幅…...
pdf格式转换为txt格式
pdf文档转换为txt文档 首先在python3虚拟环境中安装PyPDF2 Python 3.6.8 (default, Jun 20 2023, 11:53:23) [GCC 4.8.5 20150623 (Red Hat 4.8.5-44)] on linux Type "help", "copyright", "credits" or "license" for more infor…...
scss使用for循环遍历,动态赋值类名并配置不同颜色
需求:后端要传入不同的等级,前端通过等级展示不同的字体颜色,通过scss遍历更有利于动态修改颜色或者增删等级 1.通过 for $i from 1 through 4 定义循环,索引值为i 2.nth($colors, $i) 取出对应的颜色 $colors: #ff0000, #00ff…...

GaussDB数据库使用COPY命令导数
目录 一、前言 二、GaussDB数据库使用COPY命令导数语法 1、语法COPY FROM 2、语法COPY TO 3、特别说明及参数示意 三、GaussDB数据库使用COPY命令导数示例 1、操作步骤 2、准备工作(示例) 3、把一个表的数据拷贝到一个文件(示例&…...
SunFMEA软件免费试用:FMEA的目标和限制是什么?
免费试用FMEA软件-免费版-SunFMEA FMEA,即故障模式与影响分析,是一种预防性的质量工具,旨在识别、评估和优先处理潜在的故障模式及其对系统性能的影响。其目标是提高产品和过程的可靠性和安全性,降低产品故障的风险,并…...

【Redis交响乐】Redis中的数据类型/内部编码/单线程模型
文章目录 一. Redis中的数据类型和内部编码二. Redis的单线程模型面试题: redis是单线程模型,为什么效率之高,速度之快呢? 在上一篇博客中我们讲述了Redis中的通用命令,本篇博客中我们将围绕每个数据结构来介绍相关命令. 一. Redis中的数据类型和内部编码 type命令实际返回的…...

APK 瘦身
APK 瘦身的主要原因是考虑应用的下载转化率和留存率,应用太大了,用户可能就不下载了。再者,因为手机空间问题,用户有可能会卸载一些占用空间比较大的应用,所以,应用的大小也会影响留存率。 1 APK 的结构 …...

GitHub上的15000个Go模块存储库易受劫持攻击
内容概要: 目前研究发现,GitHub上超过15000个Go模块存储库容易受到一种名为“重新劫持”的攻击。 由于GitHub用户名的更改会造成9000多个存储库容易被重新劫持,同时因为帐户删除,会对6000多个存储库造成重新劫持的危机。目前统计…...

避免3ds Max效果图渲染一片黑的4个正确解决方法
在进行3ds Max效果图渲染时,有时候会遇到渲染一片黑的情况,这给我们的工作带来了很大的困扰。为了解决这个问题,下面我将介绍4个正确的解决方法。 1.相机位置 首先需要考虑场景内的相机位置是否有问题。如果相机放在了模型的内部或者墙体的外…...

UI演示双视图立体匹配与重建
相关文章: PyQt5和Qt designer的详细安装教程:https://blog.csdn.net/qq_43811536/article/details/135185233?spm1001.2014.3001.5501Qt designer界面和所有组件功能的详细介绍:https://blog.csdn.net/qq_43811536/article/details/1351868…...

添加一个编辑的小功能(PHP的Laravel)
一个编辑的按钮可以弹出会话框修改断更天数 前台 加一个编辑按钮的样式,他的名字是固定好的 之前有人封装过直接用就好,但是一定放在class里面,不要放在id里面 看见不认识的方法一定要去看里面封装的是什么 之前就是没有看,所以…...
YOLOv8改进 | 主干篇 | ConvNeXtV2全卷积掩码自编码器网络
一、本文介绍 本文给大家带来的改进机制是ConvNeXtV2网络,ConvNeXt V2是一种新型的卷积神经网络架构,它融合了自监督学习技术和架构改进,特别是加入了全卷积掩码自编码器框架和全局响应归一化(GRN)层。我将其替换YOLOv8的特征提取网络,用于提取更有用的特征。经过我的实…...
elasticsearch7.17.9两节点集群改为单节点
需求 将数据从node-23-1节点中迁移到node-83-1节点。但是现在node-83-1并没有加入到集群中,因此首先将node-83-1加入到node-23-1的集群 解决方案 使用ES版本为7.17.9,最开始设置集群为一个节点,node-23-1的配置如下 cluster.name: my-app…...

二叉树的层序遍历,力扣
目录 题目地址: 题目: 我们直接看题解吧: 解题方法: 方法分析: 解题分析: 解题思路: 代码实现: 代码补充说明: 题目地址: 102. 二叉树的层序遍历 - 力扣&…...
构建Dockerfile报错/bin/sh: 1: cd: can‘t cd to /xxx/yyy问题记录
目录 关键的命令行 排查分析 原因 附:Dockerfile构建时打印命令输出的办法 关键的命令行 WORKDIR /app COPY record . RUN cd record && xxx 执行到RUN时报了错: /bin/sh: 1: cd: cant cd to /app/record 并且宿主机当前目录也准备好了re…...

RocketMQ延迟消息机制
两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数,对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后…...

阿里云ACP云计算备考笔记 (5)——弹性伸缩
目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...

[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?
论文网址:pdf 英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...
五年级数学知识边界总结思考-下册
目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解:由来、作用与意义**一、知识点核心内容****二、知识点的由来:从生活实践到数学抽象****三、知识的作用:解决实际问题的工具****四、学习的意义:培养核心素养…...

12.找到字符串中所有字母异位词
🧠 题目解析 题目描述: 给定两个字符串 s 和 p,找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义: 若两个字符串包含的字符种类和出现次数完全相同,顺序无所谓,则互为…...
关于 WASM:1. WASM 基础原理
一、WASM 简介 1.1 WebAssembly 是什么? WebAssembly(WASM) 是一种能在现代浏览器中高效运行的二进制指令格式,它不是传统的编程语言,而是一种 低级字节码格式,可由高级语言(如 C、C、Rust&am…...

自然语言处理——循环神经网络
自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元(GRU)长短期记忆神经网络(LSTM)…...

群晖NAS如何在虚拟机创建飞牛NAS
套件中心下载安装Virtual Machine Manager 创建虚拟机 配置虚拟机 飞牛官网下载 https://iso.liveupdate.fnnas.com/x86_64/trim/fnos-0.9.2-863.iso 群晖NAS如何在虚拟机创建飞牛NAS - 个人信息分享...

ZYNQ学习记录FPGA(一)ZYNQ简介
一、知识准备 1.一些术语,缩写和概念: 1)ZYNQ全称:ZYNQ7000 All Pgrammable SoC 2)SoC:system on chips(片上系统),对比集成电路的SoB(system on board) 3)ARM:处理器…...

海云安高敏捷信创白盒SCAP入选《中国网络安全细分领域产品名录》
近日,嘶吼安全产业研究院发布《中国网络安全细分领域产品名录》,海云安高敏捷信创白盒(SCAP)成功入选软件供应链安全领域产品名录。 在数字化转型加速的今天,网络安全已成为企业生存与发展的核心基石,为了解…...