当前位置: 首页 > news >正文

[足式机器人]Part3 机构运动学与动力学分析与建模 Ch00-2(2) 质量刚体的在坐标系下运动

本文仅供学习使用,总结很多本现有讲述运动学或动力学书籍后的总结,从矢量的角度进行分析,方法比较传统,但更易理解,并且现有的看似抽象方法,两者本质上并无不同。

2024年底本人学位论文发表后方可摘抄
若有帮助请引用
本文参考:
黎 旭,陈 强 洪,甄 文 强 等.惯 性 张 量 平 移 和 旋 转 复 合 变 换 的 一 般 形 式 及 其 应 用[J].工 程 数 学 学 报,2022,39(06):1005-1011.

食用方法
质量点的动量与角动量
刚体的动量与角动量——力与力矩的关系
惯性矩阵的表达与推导——在刚体运动过程中的作用
惯性矩阵在不同坐标系下的表达
务必自己推导全部公式,并理解每个符号的含义

机构运动学与动力学分析与建模 Ch00-2质量刚体的在坐标系下运动Part2

      • 2.2.3 欧拉方程 Euler equation


2.2.3 欧拉方程 Euler equation

对式 H ⃗ Σ M / O F \vec{H}_{\Sigma _{\mathrm{M}}/\mathrm{O}}^{F} H ΣM/OF进一步分析,有:
H ⃗ Σ M / O F = ∫ R ⃗ O P i F × ( d m i ⋅ d R ⃗ P i F d t ) = ∫ ( ( R ⃗ P i F − R ⃗ O F ) × V ⃗ P i F ) d m i = ∫ ( R ⃗ P i F × V ⃗ P i F ) d m i − ∫ ( R ⃗ O F × V ⃗ P i F ) d m i = H ⃗ Σ M F − R ⃗ O F × P ⃗ G F \begin{split} \vec{H}_{\Sigma _{\mathrm{M}}/\mathrm{O}}^{F}&=\int{\vec{R}_{\mathrm{OP}_{\mathrm{i}}}^{F}\times \left( \mathrm{d}m_i\cdot \frac{\mathrm{d}\vec{R}_{\mathrm{P}_{\mathrm{i}}}^{F}}{\mathrm{d}t} \right)}=\int{\left( \left( \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{F}-\vec{R}_{\mathrm{O}}^{F} \right) \times \vec{V}_{\mathrm{P}_{\mathrm{i}}}^{F} \right) \mathrm{d}m_i} \\ &=\int{\left( \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{F}\times \vec{V}_{\mathrm{P}_{\mathrm{i}}}^{F} \right) \mathrm{d}m_i}-\int{\left( \vec{R}_{\mathrm{O}}^{F}\times \vec{V}_{\mathrm{P}_{\mathrm{i}}}^{F} \right) \mathrm{d}m_i} \\ &=\vec{H}_{\Sigma _{\mathrm{M}}}^{F}-\vec{R}_{\mathrm{O}}^{F}\times \vec{P}_{\mathrm{G}}^{F} \end{split} H ΣM/OF=R OPiF×(dmidtdR PiF)=((R PiFR OF)×V PiF)dmi=(R PiF×V PiF)dmi(R OF×V PiF)dmi=H ΣMFR OF×P GF
对上式进一步求导,则有:
d H ⃗ Σ M / O F d t = d H ⃗ Σ M F d t − d ( R ⃗ O F × P ⃗ G F ) d t = d H ⃗ Σ M F d t − V ⃗ O F × P ⃗ G F − m t o t a l ⋅ R ⃗ O F × a ⃗ G F \frac{\mathrm{d}\vec{H}_{\Sigma _{\mathrm{M}}/\mathrm{O}}^{F}}{\mathrm{d}t}=\frac{\mathrm{d}\vec{H}_{\Sigma _{\mathrm{M}}}^{F}}{\mathrm{d}t}-\frac{\mathrm{d}\left( \vec{R}_{\mathrm{O}}^{F}\times \vec{P}_{\mathrm{G}}^{F} \right)}{\mathrm{d}t}=\frac{\mathrm{d}\vec{H}_{\Sigma _{\mathrm{M}}}^{F}}{\mathrm{d}t}-\vec{V}_{\mathrm{O}}^{F}\times \vec{P}_{\mathrm{G}}^{F}-m_{\mathrm{total}}\cdot \vec{R}_{\mathrm{O}}^{F}\times \vec{a}_{\mathrm{G}}^{F} dtdH ΣM/OF=dtdH ΣMFdtd(R OF×P GF)=dtdH ΣMFV OF×P GFmtotalR OF×a GF
其中:
H ⃗ Σ M F = ∫ R ⃗ P i F × p ⃗ P i F = ∫ ( R ⃗ G F + R ⃗ G P i F ) × ( d m i ⋅ ( V ⃗ G F + V ⃗ G P i F ) ) = ∫ R ⃗ G F × V ⃗ G F d m i ⏟ m t o t a l ⋅ R ⃗ G F × V ⃗ G F + ∫ R ⃗ G F × V ⃗ G P i F d m i ⏟ 0 + ∫ R ⃗ G P i F × V ⃗ G F d m i ⏟ 0 + ∫ R ⃗ G P i F × V ⃗ G P i F d m i ⏟ ∫ R ⃗ G P i F × ( ω ⃗ M F × R ⃗ G P i F ) d m i = m t o t a l ⋅ R ⃗ G F × V ⃗ G F + ∫ R ⃗ G P i F × ( ω ⃗ M F × R ⃗ G P i F ) d m i = m t o t a l ⋅ R ⃗ G F × V ⃗ G F + ∫ ( R ⃗ G P i F ⋅ R ⃗ G P i F ) ω ⃗ M F d m i − ∫ ( R ⃗ G P i F ⋅ ω ⃗ M F ) R ⃗ G P i F d m i \begin{split} \vec{H}_{\Sigma _{\mathrm{M}}}^{F}&=\int{\vec{R}_{\mathrm{P}_{\mathrm{i}}}^{F}\times \vec{p}_{\mathrm{P}_{\mathrm{i}}}^{F}}=\int{\left( \vec{R}_{\mathrm{G}}^{F}+\vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F} \right) \times \left( \mathrm{d}m_i\cdot \left( \vec{V}_{\mathrm{G}}^{F}+\vec{V}_{\mathrm{GP}_{\mathrm{i}}}^{F} \right) \right)} \\ &=\begin{array}{c} \underbrace{\int{\vec{R}_{\mathrm{G}}^{F}\times \vec{V}_{\mathrm{G}}^{F}}\mathrm{d}m_i}\\ m_{\mathrm{total}}\cdot \vec{R}_{\mathrm{G}}^{F}\times \vec{V}_{\mathrm{G}}^{F}\\ \end{array}+\begin{array}{c} \underbrace{\int{\vec{R}_{\mathrm{G}}^{F}\times \vec{V}_{\mathrm{GP}_{\mathrm{i}}}^{F}}\mathrm{d}m_i}\\ 0\\ \end{array}+\begin{array}{c} \underbrace{\int{\vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}\times \vec{V}_{\mathrm{G}}^{F}}\mathrm{d}m_i}\\ 0\\ \end{array}+\begin{array}{c} \underbrace{\int{\vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}\times \vec{V}_{\mathrm{GP}_{\mathrm{i}}}^{F}}\mathrm{d}m_i}\\ \int{\vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}\times \left( \vec{\omega}_{\mathrm{M}}^{F}\times \vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F} \right)}\mathrm{d}m_i\\ \end{array} \\ &=m_{\mathrm{total}}\cdot \vec{R}_{\mathrm{G}}^{F}\times \vec{V}_{\mathrm{G}}^{F}+\int{\vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}\times \left( \vec{\omega}_{\mathrm{M}}^{F}\times \vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F} \right)}\mathrm{d}m_i \\ &=m_{\mathrm{total}}\cdot \vec{R}_{\mathrm{G}}^{F}\times \vec{V}_{\mathrm{G}}^{F}+\int{\left( \vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}\cdot \vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F} \right) \vec{\omega}_{\mathrm{M}}^{F}}\mathrm{d}m_i-\int{\left( \vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}\cdot \vec{\omega}_{\mathrm{M}}^{F} \right) \vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}}\mathrm{d}m_i \end{split} H ΣMF=R PiF×p PiF=(R GF+R GPiF)×(dmi(V GF+V GPiF))= R GF×V GFdmimtotalR GF×V GF+ R GF×V GPiFdmi0+ R GPiF×V GFdmi0+ R GPiF×V GPiFdmiR GPiF×(ω MF×R GPiF)dmi=mtotalR GF×V GF+R GPiF×(ω MF×R GPiF)dmi=mtotalR GF×V GF+(R GPiFR GPiF)ω MFdmi(R GPiFω MF)R GPiFdmi
H ⃗ Σ M F \vec{H}_{\Sigma _{\mathrm{M}}}^{F} H ΣMF进一步求导,则有:
d H ⃗ Σ M F d t = { R ⃗ G F × m t o t a l ⋅ a ⃗ G F + 2 ∫ ( V ⃗ P i F ⋅ R ⃗ G P i F ) ω ⃗ M F d m i + ∫ ( R ⃗ G P i F ⋅ R ⃗ G P i F ) α ⃗ M F d m i − ∫ ( V ⃗ G P i F ⋅ ω ⃗ M F ) R ⃗ G P i F d m i − ∫ ( R ⃗ G P i F ⋅ α ⃗ M F ) R ⃗ G P i F d m i − ∫ ( R ⃗ G P i F ⋅ ω ⃗ M F ) V ⃗ G P i F d m i = { R ⃗ G F × m t o t a l ⋅ a ⃗ G F + ( ∫ ( R ⃗ G P i F ⋅ R ⃗ G P i F ) α ⃗ M F d m i − ∫ ( R ⃗ G P i F ⋅ α ⃗ M F ) R ⃗ G P i F d m i ) − ∫ ( R ⃗ G P i F ⋅ ω ⃗ M F ) ( ω ⃗ M F × R ⃗ G P i F ) d m i = { R ⃗ G F × m t o t a l ⋅ a ⃗ G F + ( ∫ ( R ⃗ G P i F T R ⃗ G P i F ) ⋅ E 3 × 3 α ⃗ M F d m i − ∫ ( R ⃗ G P i F T α ⃗ M F ) R ⃗ G P i F d m i ) − ∫ ( R ⃗ G P i F T ω ⃗ M F ) ( ω ⃗ M F × R ⃗ G P i F ) d m i = { R ⃗ G F × m t o t a l ⋅ a ⃗ G F + α ⃗ M F ∫ ( R ⃗ G P i F T R ⃗ G P i F ⋅ E 3 × 3 − R ⃗ G P i F R ⃗ G P i F T ) d m i − ω ⃗ M F × ( ∫ ( R ⃗ G P i F R ⃗ G P i F T ) d m i ⋅ ω ⃗ M F ) \begin{split} \frac{\mathrm{d}\vec{H}_{\Sigma _{\mathrm{M}}}^{F}}{\mathrm{d}t}&=\begin{cases} \vec{R}_{\mathrm{G}}^{F}\times m_{\mathrm{total}}\cdot \vec{a}_{\mathrm{G}}^{F}+2\int{\left( \vec{V}_{\mathrm{P}_{\mathrm{i}}}^{F}\cdot \vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F} \right) \vec{\omega}_{\mathrm{M}}^{F}}\mathrm{d}m_{\mathrm{i}}+\int{\left( \vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}\cdot \vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F} \right) \vec{\alpha}_{\mathrm{M}}^{F}}\mathrm{d}m_{\mathrm{i}}\\ -\int{\left( \vec{V}_{\mathrm{GP}_{\mathrm{i}}}^{F}\cdot \vec{\omega}_{\mathrm{M}}^{F} \right) \vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}}\mathrm{d}m_{\mathrm{i}}-\int{\left( \vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}\cdot \vec{\alpha}_{\mathrm{M}}^{F} \right) \vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}}\mathrm{d}m_{\mathrm{i}}-\int{\left( \vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}\cdot \vec{\omega}_{\mathrm{M}}^{F} \right) \vec{V}_{\mathrm{GP}_{\mathrm{i}}}^{F}}\mathrm{d}m_{\mathrm{i}}\\ \end{cases} \\ &=\begin{cases} \vec{R}_{\mathrm{G}}^{F}\times m_{\mathrm{total}}\cdot \vec{a}_{\mathrm{G}}^{F}+\left( \int{\left( \vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}\cdot \vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F} \right) \vec{\alpha}_{\mathrm{M}}^{F}}\mathrm{d}m_{\mathrm{i}}-\int{\left( \vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}\cdot \vec{\alpha}_{\mathrm{M}}^{F} \right) \vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}}\mathrm{d}m_{\mathrm{i}} \right)\\ -\int{\left( \vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}\cdot \vec{\omega}_{\mathrm{M}}^{F} \right) \left( \vec{\omega}_{\mathrm{M}}^{F}\times \vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F} \right) \mathrm{d}m_{\mathrm{i}}}\\ \end{cases} \\ &=\begin{cases} \vec{R}_{\mathrm{G}}^{F}\times m_{\mathrm{total}}\cdot \vec{a}_{\mathrm{G}}^{F}+\left( \int{\left( {\vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}}^{\mathrm{T}}\vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F} \right) \cdot E^{3\times 3}\vec{\alpha}_{\mathrm{M}}^{F}}\mathrm{d}m_{\mathrm{i}}-\int{\left( {\vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}}^{\mathrm{T}}\vec{\alpha}_{\mathrm{M}}^{F} \right) \vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}}\mathrm{d}m_{\mathrm{i}} \right)\\ -\int{\left( {\vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}}^{\mathrm{T}}\vec{\omega}_{\mathrm{M}}^{F} \right) \left( \vec{\omega}_{\mathrm{M}}^{F}\times \vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F} \right) \mathrm{d}m_{\mathrm{i}}}\\ \end{cases} \\ &=\begin{cases} \vec{R}_{\mathrm{G}}^{F}\times m_{\mathrm{total}}\cdot \vec{a}_{\mathrm{G}}^{F}+\vec{\alpha}_{\mathrm{M}}^{F}\int{\left( {\vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}}^{\mathrm{T}}\vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}\cdot E^{3\times 3}-\vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}{\vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}}^{\mathrm{T}} \right)}\mathrm{d}m_{\mathrm{i}}\\ -\vec{\omega}_{\mathrm{M}}^{F}\times \left( \int{\left( \vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}{\vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}}^{\mathrm{T}} \right)}\mathrm{d}m_{\mathrm{i}}\cdot \vec{\omega}_{\mathrm{M}}^{F} \right)\\ \end{cases} \end{split} dtdH ΣMF= R GF×mtotala GF+2(V PiFR GPiF)ω MFdmi+(R GPiFR GPiF)α MFdmi(V GPiFω MF)R GPiFdmi(R GPiFα MF)R GPiFdmi(R GPiFω MF)V GPiFdmi= R GF×mtotala GF+((R GPiFR GPiF)α MFdmi(R GPiFα MF)R GPiFdmi)(R GPiFω MF)(ω MF×R GPiF)dmi= R GF×mtotala GF+((R GPiFTR GPiF)E3×3α MFdmi(R GPiFTα MF)R GPiFdmi)(R GPiFTω MF)(ω MF×R GPiF)dmi= R GF×mtotala GF+α MF(R GPiFTR GPiFE3×3R GPiFR GPiFT)dmiω MF×((R GPiFR GPiFT)dmiω MF)
其中:
⇒ − ω ⃗ M F × ∫ ( R ⃗ G P i F R ⃗ G P i F T ) d m i ⋅ ω ⃗ M F = ω ⃗ M F × ( ∫ ( R ⃗ G P i F T R ⃗ G P i F ⋅ E 3 × 3 − R ⃗ G P i F R ⃗ G P i F T − R ⃗ G P i F T R ⃗ G P i F ⋅ E 3 × 3 ) d m i ⋅ ω ⃗ M F ) = ω ⃗ M F × ( ∫ ( R ⃗ G P i F T R ⃗ G P i F ⋅ E 3 × 3 − R ⃗ G P i F R ⃗ G P i F T ) d m i ⋅ ω ⃗ M F ) − ω ⃗ M F × ( ∫ ( R ⃗ G P i F T R ⃗ G P i F ⋅ E 3 × 3 ) d m i ⋅ ω ⃗ M F ) ⏟ 0 \begin{split} \Rightarrow &-\vec{\omega}_{\mathrm{M}}^{F}\times \int{\left( \vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}{\vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}}^{\mathrm{T}} \right)}\mathrm{d}m_{\mathrm{i}}\cdot \vec{\omega}_{\mathrm{M}}^{F} \\ &=\vec{\omega}_{\mathrm{M}}^{F}\times \left( \int{\left( {\vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}}^{\mathrm{T}}\vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}\cdot E^{3\times 3}-\vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}{\vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}}^{\mathrm{T}}-{\vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}}^{\mathrm{T}}\vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}\cdot E^{3\times 3} \right)}\mathrm{d}m_{\mathrm{i}}\cdot \vec{\omega}_{\mathrm{M}}^{F} \right) \\ &=\vec{\omega}_{\mathrm{M}}^{F}\times \left( \int{\left( {\vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}}^{\mathrm{T}}\vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}\cdot E^{3\times 3}-\vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}{\vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}}^{\mathrm{T}} \right)}\mathrm{d}m_{\mathrm{i}}\cdot \vec{\omega}_{\mathrm{M}}^{F} \right) -\begin{array}{c} \underbrace{\vec{\omega}_{\mathrm{M}}^{F}\times \left( \int{\left( {\vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}}^{\mathrm{T}}\vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}\cdot E^{3\times 3} \right)}\mathrm{d}m_{\mathrm{i}}\cdot \vec{\omega}_{\mathrm{M}}^{F} \right) }\\ 0\\ \end{array} \end{split} ω MF×(R GPiFR GPiFT)dmiω MF=ω MF×((R GPiFTR GPiFE3×3R GPiFR GPiFTR GPiFTR GPiFE3×3)dmiω MF)=ω MF×((R GPiFTR GPiFE3×3R GPiFR GPiFT)dmiω MF) ω MF×((R GPiFTR GPiFE3×3)dmiω MF)0

将上两式进行汇总,可得:
⇒ d H ⃗ Σ M F d t = { R ⃗ G F × m t o t a l ⋅ a ⃗ G F + ∫ ( R ⃗ G P i F T R ⃗ G P i F ⋅ E 3 × 3 − R ⃗ G P i F R ⃗ G P i F T ) d m i α ⃗ M F + ω ⃗ M F × ( ∫ ( R ⃗ G P i F T R ⃗ G P i F ⋅ E 3 × 3 − R ⃗ G P i F R ⃗ G P i F T ) d m i ⋅ ω ⃗ M F ) = R ⃗ G F × m t o t a l ⋅ a ⃗ G F + [ I ] Σ M / G F α ⃗ M F + ω ⃗ M F × ( [ I ] Σ M / G F ⋅ ω ⃗ M F ) \begin{split} \Rightarrow \frac{\mathrm{d}\vec{H}_{\Sigma _{\mathrm{M}}}^{F}}{\mathrm{d}t}&=\begin{cases} \vec{R}_{\mathrm{G}}^{F}\times m_{\mathrm{total}}\cdot \vec{a}_{\mathrm{G}}^{F}+\int{\left( {\vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}}^{\mathrm{T}}\vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}\cdot E^{3\times 3}-\vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}{\vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}}^{\mathrm{T}} \right)}\mathrm{d}m_{\mathrm{i}}\vec{\alpha}_{\mathrm{M}}^{F}\\ +\vec{\omega}_{\mathrm{M}}^{F}\times \left( \int{\left( {\vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}}^{\mathrm{T}}\vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}\cdot E^{3\times 3}-\vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}{\vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}}^{\mathrm{T}} \right)}\mathrm{d}m_{\mathrm{i}}\cdot \vec{\omega}_{\mathrm{M}}^{F} \right)\\ \end{cases} \\ &=\vec{R}_{\mathrm{G}}^{F}\times m_{\mathrm{total}}\cdot \vec{a}_{\mathrm{G}}^{F}+\left[ I \right] _{\Sigma _{\mathrm{M}}/\mathrm{G}}^{F}\vec{\alpha}_{\mathrm{M}}^{F}+\vec{\omega}_{\mathrm{M}}^{F}\times \left( \left[ I \right] _{\Sigma _{\mathrm{M}}/\mathrm{G}}^{F}\cdot \vec{\omega}_{\mathrm{M}}^{F} \right) \end{split} dtdH ΣMF= R GF×mtotala GF+(R GPiFTR GPiFE3×3R GPiFR GPiFT)dmiα MF+ω MF×((R GPiFTR GPiFE3×3R GPiFR GPiFT)dmiω MF)=R GF×mtotala GF+[I]ΣM/GFα MF+ω MF×([I]ΣM/GFω MF)

其中:
[ I ] Σ M / G F = ∫ ( R ⃗ G P i F T R ⃗ G P i F ⋅ E 3 × 3 − R ⃗ G P i F R ⃗ G P i F T ) d m i \left[ I \right] _{\Sigma _{\mathrm{M}}/\mathrm{G}}^{F}=\int{\left( {\vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}}^{\mathrm{T}}\vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}\cdot E^{3\times 3}-\vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}{\vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}}^{\mathrm{T}} \right)}\mathrm{d}m_i [I]ΣM/GF=(R GPiFTR GPiFE3×3R GPiFR GPiFT)dmi

[ I ] Σ M / G F \left[ I \right] _{\Sigma _{\mathrm{M}}/\mathrm{G}}^{F} [I]ΣM/GF被称为惯性矩阵inertia matrix(或称为惯量矩阵),为该物体在固定坐标系下相对于质心点 G G G惯性张量

进而可知:
d H ⃗ Σ M F d t = M ⃗ Σ M F = ∫ R ⃗ P i F × d F ⃗ P i F = R ⃗ G F × m t o t a l ⋅ a ⃗ G F + [ I ] Σ M / G F α ⃗ M F + ω ⃗ M F × ( [ I ] Σ M / G F ⋅ ω ⃗ M F ) \frac{\mathrm{d}\vec{H}_{\Sigma _{\mathrm{M}}}^{F}}{\mathrm{d}t}=\vec{M}_{\Sigma _{\mathrm{M}}}^{F}=\int{\vec{R}_{\mathrm{P}_{\mathrm{i}}}^{F}\times \mathrm{d}\vec{F}_{\mathrm{P}_{\mathrm{i}}}^{F}}=\vec{R}_{\mathrm{G}}^{F}\times m_{\mathrm{total}}\cdot \vec{a}_{\mathrm{G}}^{F}+\left[ I \right] _{\Sigma _{\mathrm{M}}/\mathrm{G}}^{F}\vec{\alpha}_{\mathrm{M}}^{F}+\vec{\omega}_{\mathrm{M}}^{F}\times \left( \left[ I \right] _{\Sigma _{\mathrm{M}}/\mathrm{G}}^{F}\cdot \vec{\omega}_{\mathrm{M}}^{F} \right) dtdH ΣMF=M ΣMF=R PiF×dF PiF=R GF×mtotala GF+[I]ΣM/GFα MF+ω MF×([I]ΣM/GFω MF)
上式被称为:欧拉方程在惯性坐标系下相对固定点的表达式;当固定点与质心点重合时(此时G点为固定点),则有:
M ⃗ Σ M / G F = M ⃗ Σ M F − R ⃗ G F × ( m t o t a l ⋅ a ⃗ G F ) = R ⃗ G F × ( m t o t a l ⋅ a ⃗ G F ) + [ I ] Σ M / G F α ⃗ M F + ω ⃗ M F × ( [ I ] Σ M / G F ⋅ ω ⃗ M F ) − R ⃗ G F × ( m t o t a l ⋅ a ⃗ G F ) = [ I ] Σ M / G F α ⃗ M F + ω ⃗ M F × ( [ I ] Σ M / G F ⋅ ω ⃗ M F ) \begin{split} \vec{M}_{\Sigma _{\mathrm{M}}/\mathrm{G}}^{F}&=\vec{M}_{\Sigma _{\mathrm{M}}}^{F}-\vec{R}_{\mathrm{G}}^{F}\times \left( m_{\mathrm{total}}\cdot \vec{a}_{\mathrm{G}}^{F} \right) \\ &=\vec{R}_{\mathrm{G}}^{F}\times \left( m_{\mathrm{total}}\cdot \vec{a}_{\mathrm{G}}^{F} \right) +\left[ I \right] _{\Sigma _{\mathrm{M}}/\mathrm{G}}^{F}\vec{\alpha}_{\mathrm{M}}^{F}+\vec{\omega}_{\mathrm{M}}^{F}\times \left( \left[ I \right] _{\Sigma _{\mathrm{M}}/\mathrm{G}}^{F}\cdot \vec{\omega}_{\mathrm{M}}^{F} \right) -\vec{R}_{\mathrm{G}}^{F}\times \left( m_{\mathrm{total}}\cdot \vec{a}_{\mathrm{G}}^{F} \right) \\ &=\left[ I \right] _{\Sigma _{\mathrm{M}}/\mathrm{G}}^{F}\vec{\alpha}_{\mathrm{M}}^{F}+\vec{\omega}_{\mathrm{M}}^{F}\times \left( \left[ I \right] _{\Sigma _{\mathrm{M}}/\mathrm{G}}^{F}\cdot \vec{\omega}_{\mathrm{M}}^{F} \right) \end{split} M ΣM/GF=M ΣMFR GF×(mtotala GF)=R GF×(mtotala GF)+[I]ΣM/GFα MF+ω MF×([I]ΣM/GFω MF)R GF×(mtotala GF)=[I]ΣM/GFα MF+ω MF×([I]ΣM/GFω MF)
此时为固定坐标系下相对固定点质心 G G G求解的欧拉方程。

相关文章:

[足式机器人]Part3 机构运动学与动力学分析与建模 Ch00-2(2) 质量刚体的在坐标系下运动

本文仅供学习使用,总结很多本现有讲述运动学或动力学书籍后的总结,从矢量的角度进行分析,方法比较传统,但更易理解,并且现有的看似抽象方法,两者本质上并无不同。 2024年底本人学位论文发表后方可摘抄 若有…...

【亚马逊云科技】自家的AI助手 - Amazon Q

写在前面:博主是一只经过实战开发历练后投身培训事业的“小山猪”,昵称取自动画片《狮子王》中的“彭彭”,总是以乐观、积极的心态对待周边的事物。本人的技术路线从Java全栈工程师一路奔向大数据开发、数据挖掘领域,如今终有小成…...

网络安全—SSL安全访问应用

文章目录 网络拓扑部署CA服务器颁发证书开启Web服务安装IIS服务修改Web默认网页 申请Web证书前提准备申请文件生成申请web证书开始安装web证书 客户机访问web默认网站使用HTTP使用HTTPS 为客户机安装浏览器证书 环境:Windows Server 2003 网络拓扑 这里使用NAT还是…...

Qt5.14.2实现将html文件转换为pdf文件

文章目录 简介源码widget.cppwidget.uihtml文件演示效果简介 QPdfWriter是Qt框架中用于创建和写入PDF文件的类。它允许您在您的Qt应用程序中动态生成并输出PDF文档,以便进行打印、保存或导出。 QPdfWriter类提供了以下一些常用的函数和方法,可以让您创建和定制PDF文件: 构…...

Minecraft教程:使用MCSM面板搭建我的世界私服并实现远程联机

文章目录 前言1. 安装JAVA2. MCSManager安装3.局域网访问MCSM4.创建我的世界服务器5.局域网联机测试6.安装cpolar内网穿透7. 配置公网访问地址8.远程联机测试9. 配置固定远程联机端口地址9.1 保留一个固定tcp地址9.2 配置固定公网TCP地址9.3 使用固定公网地址远程联机 前言 Li…...

springboot学生成绩管理系统源码和论文

随着信息技术和网络技术的飞速发展,人类已进入全新信息化时代,传统管理技术已无法高效,便捷地管理信息。为了迎合时代需求,优化管理效率,各种各样的管理系统应运而生,各行各业相继进入信息管理时代&#xf…...

w20webshell之文件上传

1.什么是文件上传? 将本地文件传输到指定位置。2.什么是webshell 给恶意脚本提供运行环境3.文件上传所需要的条件 a.文件成功上传,未被删除 b.知道文件路径 c.文件所在系统支持脚本运行4.文件上传流程 支持任意文件上传的文件上传 a.恶意文件上传成功 b.…...

【Redis】非关系型数据库之Redis的主从复制、哨兵和集群高可用

目录 一、主从复制、哨兵、集群的区别 二、主从复制 2.1主从复制的作用 2.2主从复制的原理 2.3主从复制的实操 步骤一:环境准备 步骤二:安装Redis以及配置文件修改 Redis的主从配置文件都一样 步骤四:验证主从复制 三、哨兵 3.1哨兵…...

从私有Git仓库的搭建到命令的使用及部署再到分支管理

一、版本控制系统/版本控制器 1. 版本控制系统: git 分布式 —没有中心代码库,所有机器之间的地位同等(每台机器上都有相同的代码) svn 集中管理的 —有中心代码库,其他都是客户端 2.git与svn介绍 1.git属于分布…...

mysql基础-常用函数汇总

目录 1. 查询技巧 2. 时间函数 2.1 now() 2.2 current_date() 2.3 时间差timestampdiff()与datediff() 2.4 其他时间函数 3. 字符函数 3.1 截取函数 3.2 分割函数 3.3 left与right函数 3.4 其他函数 4. 数字函数 5. …...

COCO数据格式的json文件内容

COCO(Common Objects in Context)数据集现在有3种标注类型:object instances(目标实例), object keypoints(目标上的关键点), 和image captions(看图说话),使用JSON文件存储,包含了对图像中目标的边界框、类别标签、分割掩码等信息。 COCO标注文件是一个包含多个字…...

AI-数学-高中-3.二次函数的根的分布问题的解题方法

原作者学习视频:二次】3二次函数根分布问题(中档)_哔哩哔哩_bilibili 一、伟达定理(根与0比较的二次函数) 示例: 二、画图法: 1.开口方向的确定,有的示例可能存在向上、下两种情况…...

golang中gorm使用

前言 记录下go语言操作mysql数据库,选用gorm,gorm是一个流行的对象关系映射(ORM)库,用于简化与数据库的交互。 接入步骤 安装gorm:首先,你需要使用Go模块来安装gorm。在终端中运行以下命令&…...

centoss7安装mysql详细教程

【MySQL系列】在Centos7环境安装MySQL_centos7安装mysql-CSDN博客 【MySQL系列】在Centos7环境安装MySQL_centos7安装mysql-CSDN博客 【MySQL系列】在Centos7环境安装MySQL_centos7安装mysql-CSDN博客...

SpringBoot-拓展

邮件 依赖 <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-mail</artifactId>配置 spring.mail.username邮箱 spring.mail.password授权码 spring.mail.hostsmtp.qq.com # 开启加密验证 spring.mail.properties.mai…...

用于查询性能预测的计划结构深度神经网络模型--大数据计算基础大作业

用于查询性能预测的计划结构深度神经网络模型 论文阅读和复现 24.【X1.1】 在关系数据库查询优化领域&#xff0c;对查询时间的估计准确性直接决定了查询优化结果&#xff0c;进而影响到数据库整体的查询效率。但由于数据库自身的复杂性&#xff0c;查询时间受到数据分布、数据…...

MySQL5.7用于控制副本服务器的 SQL 语句

官网地址&#xff1a;MySQL :: MySQL 5.7 Reference Manual :: 13.4.2 SQL Statements for Controlling Replica Servers 欢迎关注留言&#xff0c;我是收集整理小能手&#xff0c;工具翻译&#xff0c;仅供参考&#xff0c;笔芯笔芯. MySQL 5.7 参考手册 / ... / CHANGE M…...

stable diffusion 人物高级提示词(四)朝向、画面范围、远近、焦距、机位、拍摄角度

一、朝向 英文中文front view正面Profile view / from side侧面half-front view半正面Back view背面(quarter front view:1.5)四分之一正面 prompt/英文中文翻译looking at the camera看向镜头facing the camera面对镜头turned towards the camera转向镜头looking away from …...

C#.Net学习笔记——设计模式六大原则

***************基础介绍*************** 1、单一职责原则 2、里氏替换原则 3、依赖倒置原则 4、接口隔离原则 5、迪米特法原则 6、开闭原则 一、单一职责原则 举例&#xff1a;类T负责两个不同的职责&#xff1a;职责P1&#xff0c;职责P2。当由于职责P1需求发生改变而需要修…...

go 修改postgresql的配置参数

postgresql.conf与postgresql.auto.conf的区别 postgresql.auto.conf的优先级高于postgresql.conf&#xff0c;如果一个参数同时存在postgresql.auto.conf和postgresql.conf里面&#xff0c;系统会先读postgresql.auto.conf的参数配置。 使用alter system set修改的是postgres…...

OpenLayers 可视化之热力图

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 热力图&#xff08;Heatmap&#xff09;又叫热点图&#xff0c;是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...

React Native 开发环境搭建(全平台详解)

React Native 开发环境搭建&#xff08;全平台详解&#xff09; 在开始使用 React Native 开发移动应用之前&#xff0c;正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南&#xff0c;涵盖 macOS 和 Windows 平台的配置步骤&#xff0c;如何在 Android 和 iOS…...

解锁数据库简洁之道:FastAPI与SQLModel实战指南

在构建现代Web应用程序时&#xff0c;与数据库的交互无疑是核心环节。虽然传统的数据库操作方式&#xff08;如直接编写SQL语句与psycopg2交互&#xff09;赋予了我们精细的控制权&#xff0c;但在面对日益复杂的业务逻辑和快速迭代的需求时&#xff0c;这种方式的开发效率和可…...

Vue2 第一节_Vue2上手_插值表达式{{}}_访问数据和修改数据_Vue开发者工具

文章目录 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染2. 插值表达式{{}}3. 访问数据和修改数据4. vue响应式5. Vue开发者工具--方便调试 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染 准备容器引包创建Vue实例 new Vue()指定配置项 ->渲染数据 准备一个容器,例如: …...

2021-03-15 iview一些问题

1.iview 在使用tree组件时&#xff0c;发现没有set类的方法&#xff0c;只有get&#xff0c;那么要改变tree值&#xff0c;只能遍历treeData&#xff0c;递归修改treeData的checked&#xff0c;发现无法更改&#xff0c;原因在于check模式下&#xff0c;子元素的勾选状态跟父节…...

sqlserver 根据指定字符 解析拼接字符串

DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...

土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等

&#x1f50d; 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术&#xff0c;可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势&#xff0c;还能有效评价重大生态工程…...

华为云Flexus+DeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建

华为云FlexusDeepSeek征文&#xff5c;DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建 前言 如今大模型其性能出色&#xff0c;华为云 ModelArts Studio_MaaS大模型即服务平台华为云内置了大模型&#xff0c;能助力我们轻松驾驭 DeepSeek-V3/R1&#xff0c;本文中将分享如何…...

云原生玩法三问:构建自定义开发环境

云原生玩法三问&#xff1a;构建自定义开发环境 引言 临时运维一个古董项目&#xff0c;无文档&#xff0c;无环境&#xff0c;无交接人&#xff0c;俗称三无。 运行设备的环境老&#xff0c;本地环境版本高&#xff0c;ssh不过去。正好最近对 腾讯出品的云原生 cnb 感兴趣&…...

使用LangGraph和LangSmith构建多智能体人工智能系统

现在&#xff0c;通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战&#xff0c;比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...