Redis高可用(主从复制、哨兵模式和Cluster集群)
目录
前瞻
主从复制
哨兵
集群
主从复制
主从复制的作用
主从复制流程
搭建Redis主从复制
实验准备
实验流程
修改 Redis 配置文件(Master节点操作)
修改 Redis 配置文件(Slave节点操作)
验证主从效果
哨兵模式
哨兵模式的作用
哨兵结构由两部分组成
故障转移机制
主节点的选举
搭建Redis哨兵模式
实验准备
实验流程
修改 Redis 哨兵模式的配置文件(所有节点操作)
编写故障切换脚本文件并在哨兵模式的配置文件中添加路径
为master服务器添加虚拟vip,用于验证主从切换后的vip漂移
启动哨兵模式
查看哨兵信息
故障模拟
群集模式
集群的作用,可以归纳为两点
数据分区
高可用
Redis集群的数据分片
搭建Redis群集模式
实验准备
实验流程
为每个端口创建配置文件
开启群集功能
启动redis节点
启动集群
测试群集
前瞻
主从复制
主从复制是高可用Redis的基础,哨兵和集群都是在主从复制基础上实现高可用的。主从复制主要实现了数据的多机备份,以及对于读操作的负载均衡和简单的故障恢复。缺陷:故障恢复无法自动化;写操作无法负载均衡;存储能力受到单机的限制。
哨兵
在主从复制的基础上,哨兵实现了自动化的故障恢复。缺陷:写操作无法负载均衡;存储能力受到单机的限制;哨兵无法对从节点进行自动故障转移,在读写分离场景下,从节点故障会导致读服务不可用,需要对从节点做额外的监控、切换操作。
集群
通过集群,Redis解决了写操作无法负载均衡,以及存储能力受到单机限制的问题,实现了较为完善的高可用方案。
主从复制
主从复制,是指将一台Redis服务器的数据,复制到其他的Redis服务器。前者称为主节点(Master),后者称为从节点(Slave);数据的复制是单向的,只能由主节点到从节点。
默认情况下,每台Redis服务器都是主节点;且一个主节点可以有多个从节点(或没有从节点),但一个从节点只能有一个主节点。
主从复制的作用
- 数据冗余:主从复制实现了数据的热备份,是持久化之外的一种数据冗余方式。
- 故障恢复:当主节点出现问题时,可以由从节点提供服务,实现快速的故障恢复;实际上是一种服务的冗余。
- 负载均衡:在主从复制的基础上,配合读写分离,可以由主节点提供写服务,由从节点提供读服务(即写Redis数据时应用连接主节点,读Redis数据时应用连接从节点),分担服务器负载;尤其是在写少读多的场景下,通过多个从节点分担读负载,可以大大提高Redis服务器的并发量。
- 高可用基石:除了上述作用以外,主从复制还是哨兵和集群能够实施的基础,因此说主从复制是Redis高可用的基础。
主从复制流程
- 若启动一个Slave机器进程,则它会向Master机器发送一个“sync command”命令,请求同步连接。
- 无论是第一次连接还是重新连接,Master机器都会启动一个后台进程,将数据快照保存到数据文件中(执行rdb操作),同时Master还会记录修改数据的所有命令并缓存在数据文件中。
- 后台进程完成缓存操作之后,Master机器就会向Slave机器发送数据文件,Slave端机器将数据文件保存到硬盘上,然后将其加载到内存中,接着Master机器就会将修改数据的所有操作一并发送给Slave端机器。若Slave出现故障导致宕机,则恢复正常后会自动重新连接。
- Master机器收到Slave端机器的连接后,将其完整的数据文件发送给Slave端机器,如果Master同时收到多个Slave发来的同步请求,则Master会在后台启动一个进程以保存数据文件,然后将其发送给所有的Slave端机器,确保所有的Slave端机器都正常。
搭建Redis主从复制
实验准备
主节点:192.168.75.30
从节点:192.168.75.40
从节点:192.168.75.50
实验流程
修改 Redis 配置文件(Master节点操作)
vim /usr/local/redis/conf/redis.conf
bind 0.0.0.0 #87行,修改监听地址为0.0.0.0
protected-mode no #111行,将本机访问保护模式设置no
port 6379 #138行,Redis默认的监听6379端口
daemonize yes #309行,设置为守护进程,后台启动
pidfile /usr/local/redis/log/redis_6379.pid #341行,指定 PID 文件
logfile "/usr/local/redis/log/redis_6379.log" #354行,指定日志文件
dir /usr/local/redis/data #504行,指定持久化文件所在目录
#requirepass 666 #1037行,可选,设置redis密码
appendonly yes #1380行,开启AOFsystemctl restart redis-server.service
修改 Redis 配置文件(Slave节点操作)
vim /usr/local/redis/conf/redis.conf
bind 0.0.0.0 #87行,修改监听地址为0.0.0.0
protected-mode no #111行,将本机访问保护模式设置no
port 6379 #138行,Redis默认的监听6379端口
daemonize yes #309行,设置为守护进程,后台启动
pidfile /usr/local/redis/log/redis_6379.pid #341行,指定 PID 文件
logfile "/usr/local/redis/log/redis_6379.log" #354行,指定日志文件
dir /usr/local/redis/data #504行,指定持久化文件所在目录
#requirepass 666 #1037行,可选,设置redis密码
appendonly yes #1380行,开启AOF
replicaof 192.168.75.30 6379 #528行,指定要同步的Master节点IP和端口
#masterauth 666 #535行,可选,指定Master节点的密码,仅在Master节点设置了requirepasssystemctl restart redis-server.service
验证主从效果
在Master节点上看日志
tail -f /usr/local/redis/log/redis_6379.log
在master节点添加键,看slave上能否同步键
在master节点上
在slave节点上(40)
在slave节点上(50)
哨兵模式
主从切换技术的方法是:当服务器宕机后,需要手动一台从机切换为主机,这需要人工干预,不仅费时费力而且还会造成一段时间内服务不可用。为了解决主从复制的缺点,就有了哨兵机制。
哨兵的核心功能:在主从复制的基础上,哨兵引入了主节点的自动故障转移。
哨兵模式的作用
- 监控:哨兵会不断地检查主节点和从节点是否运作正常。
- 自动故障转移:当主节点不能正常工作时,哨兵会开始自动故障转移操作,它会将失效主节点的其中一个从节点升级为新的主节点,并让其它从节点改为复制新的主节点。
- 通知(提醒):哨兵可以将故障转移的结果发送给客户端。
哨兵结构由两部分组成
- 哨兵节点:哨兵系统由一个或多个哨兵节点组成,哨兵节点是特殊的redis节点,不存储数据。
- 数据节点:主节点和从节点都是数据节点。
故障转移机制
1.由哨兵节点定期监控发现主节点是否出现了故障
每个哨兵节点每隔1秒会向主节点、从节点及其它哨兵节点发送一次ping命令做一次心跳检测。如果主节点在一定时间范围内不回复或者是回复一个错误消息,那么这个哨兵就会认为这个主节点主观下线了(单方面的)。当超过半数哨兵节点认为该主节点主观下线了,这样就客观下线了。
2.当主节点出现故障,此时哨兵节点会通过Raft算法(选举算法)实现选举机制共同选举出一个哨兵节点为leader,来负责处理主节点的故障转移和通知。所以整个运行哨兵的集群的数量不得少于3个节点。
3.由leader哨兵节点执行故障转移,过程如下:
- 将某一个从节点升级为新的主节点,让其它从节点指向新的主节点;
- 若原主节点恢复也变成从节点,并指向新的主节点;
- 通知客户端主节点已经更换。
需要特别注意的是,客观下线是主节点才有的概念;如果从节点和哨兵节点发生故障,被哨兵主观下线后,不会再有后续的客观下线和故障转移操作。
主节点的选举
- 过滤掉不健康的(已下线的),没有回复哨兵 ping 响应的从节点。
- .选择配置文件中从节点优先级配置最高的。(replica-priority,默认值为100)
- 选择复制偏移量最大,也就是复制最完整的从节点。
哨兵的启动依赖于主从模式,所以须把主从模式安装好的情况下再去做哨兵模式
搭建Redis哨兵模式
实验准备
主节点:192.168.75.30
从节点:192.168.75.40
从节点:192.168.75.50
实验流程
修改 Redis 哨兵模式的配置文件(所有节点操作)
cp /opt/redis-7.0.13/sentinel.conf /usr/local/redis/conf/
chown redis.redis /usr/local/redis/conf/sentinel.conf
vim /usr/local/redis/conf/sentinel.conf
protected-mode no #6行,关闭保护模式
port 26379 #10行,Redis哨兵默认的监听端口
daemonize yes #15行,指定sentinel为后台启动
pidfile /usr/local/redis/log/redis-sentinel.pid #20行,指定 PID 文件
logfile "/usr/local/redis/log/sentinel.log" #25行,指定日志存放路径
dir /usr/local/redis/data #54行,指定数据库存放路径
sentinel monitor mymaster 192.168.75.30 6379 2 #73行,修改 指定该哨兵节点监控192.168.80.10:6379这个主节点,该主节点的名称是mymaster,最后的2的含义与主节点的故障判定有关:至少需要2个哨兵节点同意,才能判定主节点故障并进行故障转移
#sentinel auth-pass mymaster abc123 #76行,可选,指定Master节点的密码,仅在Master节点设置了requirepass
sentinel down-after-milliseconds mymaster 3000 #114行,判定服务器down掉的时间周期,默认30000毫秒(30秒)
sentinel failover-timeout mymaster 180000 #214行,同一个sentinel对同一个master两次failover之间的间隔时间(180秒)
编写故障切换脚本文件并在哨兵模式的配置文件中添加路径
编写脚本文件(三台一样)
#!/bin/bash
newmaster=$6
oldmaster="$(ifconfig ens33|awk 'NR==2{print $2}')"
vip="192.168.75.100"if [ $newmaster == $oldmaster ]
thenifconfig ens33:1 $vip
elseifconfig ens33:1 down
fi
在哨兵模式的配置文件中添加路径(三台一样)
vim sentinel.conf
sentinel client-reconfig-script mymaster /etc/redis/failover.sh
Sentinel 在做 failover 的时候会执行这个脚本,并且传递 7 个参数 master-name、role、state、from-ip、from-port、to-ip、to-port,其中 to-ip 是新主 Redis 的 IP 地址,可以在这个脚本里做 VIP 漂移操作。
为master服务器添加虚拟vip,用于验证主从切换后的vip漂移
启动哨兵模式
先启master,再启slave
cd /usr/local/redis/conf/
redis-sentinel sentinel.conf &
查看哨兵信息
redis-cli -p 26379 info Sentinel
故障模拟
杀死master的redis服务
#查看redis-server进程号:
ps -ef | grep redis
#杀死 Master 节点上redis-server的进程号
kill -9 9515 #Master节点上redis-server的进程号
验证结果
#在master服务器上
tail -f /usr/local/redis/log/sentinel.log
#去到另外一台从服务器上(40)来验证结果
redis-cli -p 26379 -a 666 INFO Sentinel
redis-cli -p 6379 -a 666 INFO replication
在40主机上测试主从切换
到新master(30)上验证vip漂移
群集模式
集群,即Redis Cluster,是Redis 3.0开始引入的分布式存储方案。
集群由多组节点(Node)组成,Redis的数据分布在这些节点中。集群中的节点分为主节点和从节点:只有主节点负责读写请求和集群信息的维护;从节点只进行主节点数据和状态信息的复制。
集群的作用,可以归纳为两点
数据分区
数据分区(或称数据分片)是集群最核心的功能。
集群将数据分散到多个节点,一方面突破了Redis单机内存大小的限制,存储容量大大增加;另一方面每个主节点都可以对外提供读服务和写服务,大大提高了集群的响应能力。
Redis单机内存大小受限问题,在介绍持久化和主从复制时都有提及;例如,如果单机内存太大,bgsave和bgrewriteaof的fork操作可能导致主进程阻塞,主从环境下主机切换时可能导致从节点长时间无法提供服务,全量复制阶段主节点的复制缓冲区可能溢出。
高可用
集群支持主从复制和主节点的自动故障转移(与哨兵类似);当任一节点发生故障时,集群仍然可以对外提供服务。
Redis集群的数据分片
Redis集群引入了哈希槽的概念
Redis集群有16384个哈希槽(编号0-16383)
集群的每组节点负责一部分哈希槽
每个Key通过CRC16校验后对16384取余来决定放置哪个哈希槽,通过这个值,去找到对应的插槽所对应的节点,然后直接自动跳转到这个对应的节点上进行存取操作
搭建Redis群集模式
实验准备
主机:192.168.75.60
实验流程
redis的集群一般需要6个节点,3主3从。方便起见,这里所有节点在同一台服务器上模拟:
以端口号进行区分:3个主节点端口号:6001/6002/6003,对应的从节点端口号:6004/6005/6006。
为每个端口创建配置文件
cd /usr/local/redis/
mkdir -p redis-cluster/redis600{1..6}
for i in {1..6}
do
cp /opt/redis-7.0.13/redis.conf /usr/local/redis/redis-cluster/redis600$i
cp /opt/redis-7.0.13/src/redis-cli /opt/redis-7.0.13/src/redis-server /usr/local/redis/redis-cluster/redis600$i
done
开启群集功能
其他5个文件夹的配置文件以此类推修改,注意6个端口都要不一样
cd /usr/local/redis/redis-cluster/redis6001
vim redis.conf
#bind 127.0.0.1 #87行,注释掉bind项,默认监听所有网卡
protected-mode no #111行,关闭保护模式
port 6001 #138行,修改redis监听端口
daemonize yes #309行,设置为守护进程,后台启动
pidfile /usr/local/redis/log/redis_6001.pid #341行,指定 PID 文件
logfile "/usr/local/redis/log/redis_6001.log" #354行,指定日志文件
dir "/usr/local/redis/data" #504行,指定持久化文件所在目录
appendonly yes #1379行,开启AOF
cluster-enabled yes #1576行,取消注释,开启群集功能
cluster-config-file nodes-6001.conf #1584行,取消注释,群集名称文件设置
cluster-node-timeout 15000 #1590行,取消注释群集超时时间设置
启动redis节点
for d in {1..6}
do
cd /usr/local/redis/redis-cluster/redis600$d
./redis-server redis.conf
doneps -ef | grep redis
启动集群
redis-cli --cluster create 127.0.0.1:6001 127.0.0.1:6002 127.0.0.1:6003 127.0.0.1:6004 127.0.0.1:6005 127.0.0.1:6006 --cluster-replicas 1
#六个实例分为三组,每组一主一从,前面的做主节点,后面的做从节点。下面交互的时候 需要输入 yes 才可以创建。
--replicas 1 表示每个主节点有1个从节点。
测试群集
redis-cli -p 6001 -c #加-c参数,节点之间就可以互相跳转
127.0.0.1:6001> cluster slots #查看节点的哈希槽编号范围
redis-cli -p 6001 -c cluster nodes
添加key键,会根据哈希槽编号选择相应的节点
相关文章:

Redis高可用(主从复制、哨兵模式和Cluster集群)
目录 前瞻 主从复制 哨兵 集群 主从复制 主从复制的作用 主从复制流程 搭建Redis主从复制 实验准备 实验流程 修改 Redis 配置文件(Master节点操作) 修改 Redis 配置文件(Slave节点操作) 验证主从效果 哨兵模式 哨兵…...

【Web】CTFSHOW PHP命令执行刷题记录(全)
目录 web29 web30 web31 web32 web33 web34 web35 web36 web37-39 web40 web41 (y4✌脚本) web42 -44 web45 web46 -49 web50 web51 web52 web53 web54 web55-56 web57 web58 web59 web60 web61 web62 web63-65 web66-67 w…...

鸿蒙开发已解决-Failed to connect to gitee.com port 443: Time out 连接超时提示
文章目录 项目场景:问题描述原因分析:解决方案:解决方案1解决方案2:解决方案3:此Bug解决方案总结解决方案总结**心得体会:解决连接超时问题的三种方案**项目场景: 导入Sample时遇到导入失败的情况,并提示“Failed to connect to gitee.com port 443: Time out”连接超…...

使用cURL命令在Linux中测试HTTP服务器的性能
cURL是一个强大的命令行工具,用于从或向服务器传输数据。它支持多种协议,包括HTTP、HTTPS、FTP等。在Linux系统中,cURL可以用于测试和评估HTTP服务器的性能。下面是一些使用cURL命令测试HTTP服务器性能的示例和说明。 1. 基本请求 要向指定…...

机器学习 -- 余弦相似度
场景 我有一个 页面如下(随便找的): 我的需求是拿到所有回答的链接, 再或者我在找房子网上,爬到所有的房产信息,我们并不想做过多的处理,我只要告诉程序,请帮我爬一个类似 xxx 相似…...

LeNet-5(fashion-mnist)
文章目录 前言LeNet模型训练 前言 LeNet是最早发布的卷积神经网络之一。该模型被提出用于识别图像中的手写数字。 LeNet LeNet-5由以下两个部分组成 卷积编码器(2)全连接层(3) 卷积块由一个卷积层、一个sigmoid激活函数和一个…...

Unity中URP下开启和使用深度图
文章目录 前言一、在Unity中打开URP下的深度图二、在Shader中开启深度图1、使用不透明渲染队列才可以使用深度图2、半透明渲染队列深度图就会关闭 三、URP深度图 和 BRP深度图的区别四、在Shader中,使用深度图1、定义纹理和采样器2、在片元着色器对深度图采样并且输…...

类似东郊到家上门预约系统需要具备哪些功能,预约系统应该怎么做
随着上门服务需求的持续增长,各类APP小程序应运而生。吸引了无数商家投资者,纷纷想要开发一款类似于"东郊到家"这样的上门服务软件。要想成功,这样的软件需具备以下核心功能: 1. 快速注册与登录:用户能通过手…...

鸿蒙APP和Android的区别
鸿蒙(HarmonyOS)和Android是两个不同的操作系统,它们有一些区别,包括架构、开发者支持、应用生态和一些设计理念。以下是鸿蒙APP和Android APP之间的一些主要区别,希望对大家有所帮助。北京木奇移动技术有限公司&#…...

给Flutter + FireBase 增加 badge 徽章,App启动器 通知红点。
在此之前需要配置好 firebase 在flutter 在项目中。(已经配置好的可以忽略此提示) Firebase 配置教程:flutter firebase 云消息通知教程 (android-安卓、ios-苹果)_flutter firebase_messaging ios环境配置-CSDN博客 由于firebase 提供的消息…...

2024年中国杭州|网络安全技能大赛(CTF)正式开启竞赛报名
前言 一、CTF简介 CTF(Capture The Flag)中文一般译作夺旗赛,在网络安全领域中指的是网络安全技术人员之间进行技术竞技的一种比赛形式。CTF起源于1996年DEFCON全球黑客大会,以代替之前黑客们通过互相发起真实攻击进行技术比拼的…...

112.Qt中的窗口类
我们在通过Qt向导窗口基于窗口的应用程序的项目过程中倒数第二步让我们选择跟随项目创建的第一个窗口的基类, 下拉菜单中有三个选项, 分别为: QMainWindow、QDialog、QWidget如下图: 常用的窗口类有3个 在创建Qt窗口的时候, 需要让自己的窗口类继承上述三个窗口类的…...

如何设置电脑桌面提醒,电脑笔记软件哪个好?
对于大多数上班族来说,每天要完成的待办事项实在太多了,如果不能及时去处理,很容易因为各种因素导致忘记,从而给自己带来不少麻烦。所以,我们往往会借助一些提醒类的软件将各项任务逐一记录下来,然后设置上…...

C# HttpClient Get Post简单封装
文章目录 前言封装好的代码测试接口测试代码 前言 微软官方有Get和Post请求,我把他简单化处理一下 封装好的代码 public class MyHttpHelper{private string baseUrl;/// <summary>/// 基础Api/// </summary>public string BaseUrl{get{return baseUr…...

创建网格(Grid/GridItem)
目录 1、概述 2、布局与约束 3、设置排列方式 3.1设置行列数量与占比 3.2、设置子组件所占行列数 3.3、设置主轴方向 3.4、在网格布局中显示数据 3.5、设置行列间距 4、构建可滚动的网格布局 5、实现简单的日历功能 6、性能优化 1、概述 网格布局是由“行”和“列”分…...
思科路由器忘记密码怎么重置
断电重启路由器,在开机过程中按下CtrlPause/break,或者只按下Pause/break(没有测试),在PT(Cisco Packet Tracert)中则需要按CtrlC。路由器会进入rommon >模式。 切换到0x2142模式࿰…...

JVM基础(2)——JVM内存模型
一、简介 JVM会加载类到内存中,所以 JVM 中必然会有一块内存区域来存放我们写的那些类。Java中有类对象、普通对象、本地变量、方法信息等等各种对象信息,所以JVM会对内存区域进行划分: JDK1.8及以后,上图中的方法区变成了Metasp…...

使用 Process Explorer 和 Windbg 排查软件线程堵塞问题
目录 1、问题说明 2、线程堵塞的可能原因分析 3、使用Windbg和Process Explorer确定线程中发生了死循环 4、根据Windbg中显示的函数调用堆栈去查看源码,找到问题 4.1、在Windbg定位发生死循环的函数的方法 4.2、在Windbg中查看变量的值去辅助分析 4.3、是循环…...

做科技类的展台3d模型用什么材质比较好---模大狮模型网
对于科技类展台3D模型,以下是几种常用的材质选择: 金属材质:金属材质常用于科技展台的现代感设计,如不锈钢、铝合金或镀铬材质。金属材质可以赋予展台一个科技感和高档感,同时还可以反射光线,增加模型的真实…...

EasyExcel简单实例(未完待续)
EasyExcel简单实例 准备工作场景一:读取 Student 表需求1:简单读取需求2:读取到异常信息时不中断需求3:读取所有的sheet工作表需求4:读取指定的sheet工作表需求5:从指定的行开始读取 场景二:写入…...

UE5 学习系列(二)用户操作界面及介绍
这篇博客是 UE5 学习系列博客的第二篇,在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下: 【Note】:如果你已经完成安装等操作,可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作,重…...
java 实现excel文件转pdf | 无水印 | 无限制
文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...
1688商品列表API与其他数据源的对接思路
将1688商品列表API与其他数据源对接时,需结合业务场景设计数据流转链路,重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点: 一、核心对接场景与目标 商品数据同步 场景:将1688商品信息…...

页面渲染流程与性能优化
页面渲染流程与性能优化详解(完整版) 一、现代浏览器渲染流程(详细说明) 1. 构建DOM树 浏览器接收到HTML文档后,会逐步解析并构建DOM(Document Object Model)树。具体过程如下: (…...

[10-3]软件I2C读写MPU6050 江协科技学习笔记(16个知识点)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16...
鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南
1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发,使用DevEco Studio作为开发工具,采用Java语言实现,包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...
JAVA后端开发——多租户
数据隔离是多租户系统中的核心概念,确保一个租户(在这个系统中可能是一个公司或一个独立的客户)的数据对其他租户是不可见的。在 RuoYi 框架(您当前项目所使用的基础框架)中,这通常是通过在数据表中增加一个…...
LeetCode - 199. 二叉树的右视图
题目 199. 二叉树的右视图 - 力扣(LeetCode) 思路 右视图是指从树的右侧看,对于每一层,只能看到该层最右边的节点。实现思路是: 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...
Go 语言并发编程基础:无缓冲与有缓冲通道
在上一章节中,我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道,它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好࿰…...