当前位置: 首页 > news >正文

论文阅读:TinyGPT-V 论文阅读及源码梳理对应

!!!目前只是初稿,静待周末更新

引言

TinyGPT-V来自论文:TinyGPT-V: Efficient Multimodal Large Language Model via Small Backbones,是一篇基于较小LLM作为backbone的多模态工作。相关工作已经开源,地址为:Github

之所以选择这篇文章,是因为比较具有落地意义,且便于本地运行,查看和调试。

整体结构图
推理流程
训练阶段
Q & A
QFormer作用?

QFormer来自论文BCLI2工作中,用来弥补Frozen Image encoder和Frozen LLM之间的gap。
基于Bert作为初始化的。

推理结构图
Image
blip2_image_eval
QFormer
Liner
Linear
get_context_emb
prompt
Give the following image: <Img>ImageContent</Img>. "
"You will be able to see the image once I provide it to you. Please answer my questions.

融合方法:
先将图像转为向量。将prompt除Image部分其他部分依次转为向量。
再将两者mix,得到最终向量。

def get_context_emb(self, prompt, img_list):device = img_list[0].deviceprompt_segs = prompt.split("<ImageHere>")assert (len(prompt_segs) == len(img_list) + 1), "Unmatched numbers of image placeholders and images."seg_tokens = [self.llama_tokenizer(seg, return_tensors="pt", add_special_tokens=i == 0).to(device).input_ids  # only add bos to the first segfor i, seg in enumerate(prompt_segs)]seg_embs = [self.embed_tokens(seg_t) for seg_t in seg_tokens]# TODO: 这里具体如何混合在一起的,需要Debug查看mixed_embs = [emb for pair in zip(seg_embs[:-1], img_list) for emb in pair] + [seg_embs[-1]]mixed_embs = torch.cat(mixed_embs, dim=1)return mixed_embs

相关文章:

论文阅读:TinyGPT-V 论文阅读及源码梳理对应

&#xff01;&#xff01;&#xff01;目前只是初稿&#xff0c;静待周末更新 引言 TinyGPT-V来自论文&#xff1a;TinyGPT-V: Efficient Multimodal Large Language Model via Small Backbones&#xff0c;是一篇基于较小LLM作为backbone的多模态工作。相关工作已经开源&…...

XCTF:MISCall[WriteUP]

使用file命令&#xff0c;查看该文件类型 file d02f31b893164d56b7a8e5edb47d9be5 文件类型&#xff1a;bzip2 使用bzip2命令可对该文件进行解压 bzip2 -d d02f31b893164d56b7a8e5edb47d9be5 生成了一个后缀为.out的文件 再次使用file命令&#xff0c;查看该文件类型 file…...

【MIdjourney】图像角度关键词

本篇仅是我个人在使用过程中的一些经验之谈&#xff0c;不代表一定是对的&#xff0c;如有任何问题欢迎在评论区指正&#xff0c;如有补充也欢迎在评论区留言。 1.侧面视角(from side) 侧面视角观察或拍摄的主体通常以其侧面的特征为主要焦点&#xff0c;以便更好地展示其轮廓…...

使用 Jamf Pro 和 Okta 工作流程实现自动化苹果设备管理

Jamf的销售工程师Vincent Bonnin与Okta的产品经理Emily Wendell一起介绍了JNUC 2021的操作方法会议。它们涵盖了Okta工作流程&#xff08;Okta Workflow&#xff09;&#xff0c;并在其中集成了Jamf Pro&#xff0c;构建了一些工作流程&#xff0c;并提供了几个用例。 Okta 工作…...

根能抵达的节点(二分法、DFS)C++

给定一棵由 N个节点构成的带边权树。节点编号从 0到 N−1&#xff0c;其中 0 号点为根节点。最初&#xff0c;从根节点可以抵达所有节点&#xff08;包括自己&#xff09;。如果我们将所有边权小于 X 的边全部删掉&#xff0c;那么从根节点可以抵达的节点数目就可能发生改变。 …...

一天一个设计模式---桥接模式

概念 桥接器模式是一种结构型设计模式&#xff0c;旨在将抽象部分与实现部分分离&#xff0c;使它们可以独立变化而不相互影响。桥接器模式通过创建一个桥接接口&#xff0c;连接抽象和实现&#xff0c;从而使两者可以独立演化。 具体内容 桥接器模式通常包括以下几个要素&a…...

OpenHarmony4.0Release系统应用常见问题FAQ

前言 自OpenHarmony4.0Release发布之后&#xff0c;许多小伙伴使用了配套的系统应用源码以及IDE作为基线开发&#xff0c;也遇到了各种各样的问题&#xff0c;这篇文档主要收录了比较常见的一些问题解答。 FAQ 系统应用源码在哪 目前OpenHarmony系统应用分为3种模式&#x…...

Skywalking UI页面中操作的各种实用功能汇总

刚刚接触skywalking不久&#xff0c;在这里总结一下在UI页面中操作的各种实用功能&#xff0c;随着使用的不断深入&#xff0c;我也会对文章进行持续补充。 本文skywalking 的ui入口是官方demo &#xff0c;版本是10.0.0-SNAPSHOT-593bd05 http://demo.skywalking.apache.org…...

springboot摄影跟拍预定管理系统源码和论文

首先,论文一开始便是清楚的论述了系统的研究内容。其次,剖析系统需求分析,弄明白“做什么”,分析包括业务分析和业务流程的分析以及用例分析,更进一步明确系统的需求。然后在明白了系统的需求基础上需要进一步地设计系统,主要包罗软件架构模式、整体功能模块、数据库设计。本项…...

【python】python新年烟花代码【附源码】

欢迎来到英杰社区https://bbs.csdn.net/topics/617804998 新年的钟声即将敲响&#xff0c;为了庆祝这个喜庆的时刻&#xff0c;我们可以用 Python 编写一个炫彩夺目的烟花盛典。本文将详细介绍如何使用 Pygame 库创建一个令人惊叹的烟花效果。 一、效果图&#xff1a; 二…...

书生·浦语大模型实战营-学习笔记1

目录 书生浦语大模型全链路开源体系数据集预训练微调评测部署多智能体 视频地址&#xff1a; (1)书生浦语大模型全链路开源体系 开源工具github&#xff1a; https://github.com/InternLM/InternLM 书生浦语大模型全链路开源体系 这次视频中介绍了由上海人工智能实验室OpenMMLa…...

ELF解析03 - 加载段

本文主要讨论 mmap 函数以及如何使用 mmap 函数来加载一个 ELF 的可加载段。 01纠错 Android 8 及以后是会读取 section header 的&#xff0c;但不是所有的 section 都会读取。 https://cs.android.com/android/platform/superproject/main//main:bionic/linker/linker_phdr…...

Mysql——索引相关的数据结构

索引 引入 我们知道&#xff0c;数据库查询是数据库的最主要功能之一。我们都希望查询数据的速度能尽可能的快&#xff0c;因此数据库系统的设计者会从查询算法的角度进行优化。最基本的查询算法当然是顺序查找&#xff08;linear search&#xff09;&#xff0c;这种复杂度为…...

无代码DIY图像检索

软件环境准备 可参见《HuggingFists-低代码玩转LLM RAG-准备篇》中的HuggingFists安装及Milvus安装。 流程环境准备 图片准备 进入HuggingFists内置的文件系统&#xff0c;数据源->文件系统->sengee_fs_settings_201创建Image文件夹将事先准备的多张相同或不同种类的图…...

Elasticsearch--Master选举

角色 主节点&#xff08;active master&#xff09;&#xff1a;一般指的是活跃的主节点&#xff0c;避免负载任务&#xff0c;主节点主要用来管理集群&#xff0c;专用master节点仍将充当协调节点 候选节点&#xff08;master-eligible nodes&#xff09;&#xff1a;默认具备…...

微服务实战系列之Filter

前言 Filter&#xff0c;又名过滤器&#xff0c;当然不是我们日常中见到的&#xff0c;诸如此类构件&#xff1a; 而应该是微服务中常使用的&#xff0c;诸如此类&#xff08;图片来自官网&#xff0c;点击可查看原图&#xff09;&#xff1a; 一般用于字符编码转换&#xf…...

使用GPT大模型调用工具链

本文特指openai使用sdk的方式调用工具链。 安装openai pip install openai export OPENAI_API_KEY"YOUR OPENAI KEY" 定义工具函数 from openai import OpenAI import jsonclient OpenAI() #工具函数 def get_current_weather(location, unit"fahrenheit&q…...

C语言实现bmp图像底层数据写入与创建

要用C语言实现bmp图像底层数据写入进而创建一张bmp图像&#xff0c;需要对bmp图像文件格式非常了解&#xff0c;如果不太熟悉bmp图像文件格式请先移步bmp图像文件格式超详解 创建bmp图像文件的方式有很多&#xff0c;比如用halcon&#xff0c;用qt&#xff0c;这些都是把已经画…...

基于BP神经网络的定位算法,基于BP神经网络定位预测

目录 摘要 BP神经网络参数设置及各种函数选择 参数设置 训练函数 传递函数 学习函数 性能函数 显示函数 前向网络创建函数 BP神经网络训练窗口详解 训练窗口例样 训练窗口四部详解 基于BP神经网络的定位算法,基于BP神经网络定位预测 代码下载:基于BP神经网络的定位算法,基于…...

Java Http各个请求类型详细介绍

1. 前言 在Spring Boot框架中&#xff0c;HTTP请求类型是构建Web应用程序的重要组成部分。常见的请求类型包括GET、POST、PUT和DELETE&#xff0c;每种类型都有其特定的用途和特点。本文将详细比较这四种请求类型&#xff0c;帮助您在开发过程中做出明智的选择。 2. GET请求…...

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造&#xff0c;完美适配AGV和无人叉车。同时&#xff0c;集成以太网与语音合成技术&#xff0c;为各类高级系统&#xff08;如MES、调度系统、库位管理、立库等&#xff09;提供高效便捷的语音交互体验。 L…...

利用ngx_stream_return_module构建简易 TCP/UDP 响应网关

一、模块概述 ngx_stream_return_module 提供了一个极简的指令&#xff1a; return <value>;在收到客户端连接后&#xff0c;立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量&#xff08;如 $time_iso8601、$remote_addr 等&#xff09;&a…...

在四层代理中还原真实客户端ngx_stream_realip_module

一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡&#xff08;如 HAProxy、AWS NLB、阿里 SLB&#xff09;发起上游连接时&#xff0c;将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后&#xff0c;ngx_stream_realip_module 从中提取原始信息…...

leetcodeSQL解题:3564. 季节性销售分析

leetcodeSQL解题&#xff1a;3564. 季节性销售分析 题目&#xff1a; 表&#xff1a;sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...

【python异步多线程】异步多线程爬虫代码示例

claude生成的python多线程、异步代码示例&#xff0c;模拟20个网页的爬取&#xff0c;每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程&#xff1a;允许程序同时执行多个任务&#xff0c;提高IO密集型任务&#xff08;如网络请求&#xff09;的效率…...

MySQL中【正则表达式】用法

MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现&#xff08;两者等价&#xff09;&#xff0c;用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例&#xff1a; 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...

站群服务器的应用场景都有哪些?

站群服务器主要是为了多个网站的托管和管理所设计的&#xff0c;可以通过集中管理和高效资源的分配&#xff0c;来支持多个独立的网站同时运行&#xff0c;让每一个网站都可以分配到独立的IP地址&#xff0c;避免出现IP关联的风险&#xff0c;用户还可以通过控制面板进行管理功…...

BLEU评分:机器翻译质量评估的黄金标准

BLEU评分&#xff1a;机器翻译质量评估的黄金标准 1. 引言 在自然语言处理(NLP)领域&#xff0c;衡量一个机器翻译模型的性能至关重要。BLEU (Bilingual Evaluation Understudy) 作为一种自动化评估指标&#xff0c;自2002年由IBM的Kishore Papineni等人提出以来&#xff0c;…...

苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会

在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...

密码学基础——SM4算法

博客主页&#xff1a;christine-rr-CSDN博客 ​​​​专栏主页&#xff1a;密码学 &#x1f4cc; 【今日更新】&#x1f4cc; 对称密码算法——SM4 目录 一、国密SM系列算法概述 二、SM4算法 2.1算法背景 2.2算法特点 2.3 基本部件 2.3.1 S盒 2.3.2 非线性变换 ​编辑…...