【深度学习每日小知识】Overfitting 过拟合
过拟合是机器学习(ML)中的常见问题,是指模型过于复杂,泛化能力较差的场景。当模型在有限数量的数据上进行训练,并且学习了特定于该特定数据集的模式,而不是适用于新的、看不见的数据的一般模式时,就会发生这种情况。因此,该模型能够对训练数据做出准确的预测,但无法泛化到新的、看不见的数据,并且在验证或测试数据集上表现不佳。
正则化、交叉验证和提前停止是可用于停止或减少过拟合的一些策略。正则化过程需要通过包含惩罚项来简化模型的目标函数。交叉验证过程需要将数据折叠成不同的组,并在每个折叠上训练和评估模型。一种称为提前停止的策略包括在训练期间密切关注模型的性能,并在验证数据集的性能开始下降时中断该过程。
总体而言,过拟合是 ML 中的常见问题,会显着影响模型的性能和准确性。在训练期间仔细监视模型的性能,并使用正则化、交叉验证和提前停止等技术来防止或减轻过度拟合,这一点很重要。
如何减少计算机视觉中的过拟合?
正则化、交叉验证和提前停止是可用于停止或减少过拟合的一些策略。正则化过程需要通过包含惩罚项来简化模型的目标函数。交叉验证过程需要将数据折叠成不同的组,并在每个折叠上训练和评估模型。一种称为提前停止的策略包括在训练期间密切关注模型的性能,并在验证数据集的性能开始下降时中断该过程。
总体而言,过拟合是 ML 中的常见问题,会显着影响模型的性能和准确性。在训练期间仔细监视模型的性能,并使用正则化、交叉验证和提前停止等技术来防止或减轻过度拟合,这一点很重要。
AI插图
现在,让我们生成两个图像:一个用于解释损失函数,另一个用于展示正则化的效果。
为了更直观地理解过拟合,我将创建一个示例图像,展示一个简单数据集上的过拟合现象。假设我们有一组点,我们尝试使用不同复杂度的模型来拟合这些点。
- 第一张图将展示一个简单模型(如线性回归)拟合数据的情况。
- 第二张图将展示一个复杂模型(如高阶多项式回归)过度拟合数据的情况。
让我们生成这些示例图像。
以上是关于过拟合的示例图像。在这个图像中,您可以看到两种情况:
上方:展示了一个简单的线性回归模型尝试拟合一组散布的数据点。这个模型可能过于简单,无法很好地捕捉数据的真实趋势,代表了欠拟合的情况。
下方:显示了一个复杂的多项式回归模型,该模型过度弯曲以穿过相同的数据点。这种情况下,模型过于复杂,开始学习数据中的噪声和异常值,这是过拟合的典型例子。
这个图像直观地展示了过拟合与模型复杂度之间的关系,以及为什么在机器学习中选择合适的模型复杂度是如此重要。希望这能帮助您更好地理解过拟合的概念!
相关文章:

【深度学习每日小知识】Overfitting 过拟合
过拟合是机器学习(ML)中的常见问题,是指模型过于复杂,泛化能力较差的场景。当模型在有限数量的数据上进行训练,并且学习了特定于该特定数据集的模式,而不是适用于新的、看不见的数据的一般模式时࿰…...

嵌入式必备的WEB知识
写在前面 嵌入式要学习Wed前端吗?答案是要的,不需要深入学习,只需要简单了解即可。为什么要学习? 原因如下: 可以远程控制和管理设备:通过简单的Web知识,嵌入式系统可以建立Web界面,…...
Scipy 中级教程——信号处理
Python Scipy 中级教程:信号处理 Scipy 的信号处理模块提供了丰富的工具,用于处理和分析信号数据。在本篇博客中,我们将深入介绍 Scipy 中的信号处理功能,并通过实例演示如何应用这些工具。 1. 信号生成与可视化 首先ÿ…...

【排序篇2】选择排序、计数排序
目录 一、选择排序二、计数排序 一、选择排序 整体思想: 从数组中选出最小值和最大值放在起始位置,直到排序完成 具体步骤: 定义两个变量begin和end为下标,指向数组始末定义要找的最大值的下标为maxi,最小值的下标为…...

重生奇迹mu敏弓加点攻略
1. 选择正确的属性点分配 在重生奇迹mu游戏中敏弓的属性点分配非常重要。建议将主要属性点分配在敏捷和力量上这样可以提高敏弓的攻击力和闪避能力。适当加点在体力和魔力上可以提高敏弓的生存能力和技能释放次数。不要忘记适当加点在智力上可以提高敏弓的技能威力和命中率。 …...

用通俗易懂的方式讲解:一文讲透主流大语言模型的技术原理细节
大家好,今天的文章分享三个方面的内容: 1、比较 LLaMA、ChatGLM、Falcon 等大语言模型的细节:tokenizer、位置编码、Layer Normalization、激活函数等。 2、大语言模型的分布式训练技术:数据并行、张量模型并行、流水线并行、3D …...

通过IP地址识别风险用户
随着互联网的迅猛发展,网络安全成为企业和个人关注的焦点之一。识别和防范潜在的风险用户是维护网络安全的关键环节之一。IP数据云将探讨通过IP地址识别风险用户的方法和意义。 IP地址的基本概念:IP地址是互联网上设备的独特标识符,它分为IP…...
汇编和C语言转换
C语言和汇编语言之间有什么区别 C语言和汇编语言之间存在显著的区别,主要体现在以下几个方面: 抽象层次: 汇编语言:更接近硬件的低级语言,通常与特定的处理器或指令集紧密相关。它提供了对处理器指令的直接控制,允许程序员直接操作硬件资源,如寄存器、内存等。 C语言:…...
【IOS】惯性导航详解(包含角度、加速度、修正方式的api分析)
参考文献 iPhone的惯性导航,基于步态。https://www.docin.com/p-811792664.html Inertial Odometry on Handheld Smartphones: https://arxiv.org/pdf/1703.00154.pdf 惯性导航项目相关代码:https://github.com/topics/inertial-navigation-systems use…...

Self-Attention
前置知识:RNN,Attention机制 在一般任务的Encoder-Decoder框架中,输入Source和输出Target内容是不一样的,比如对于英-中机器翻译来说,Source是英文句子,Target是对应的翻译出的中文句子,Attent…...

网络协议与攻击模拟_04ICMP协议与ICMP重定向
ICMP协议是网络层协议, 利用ICMP协议可以实现网络中监听服务和拒绝服务,如 ICMP重定向的攻击。 一、ICMP基本概念 1、ICMP协议 ICMP是Internet控制报文协议,用于在IP主机、路由器之间传递控制消息,控制消息指网络通不通、主机是…...
pytest-mock 数据模拟
文章目录 mock 测试unittest.mockMock类MagicMock类patch装饰器create_autospec函数断言的方法 pytest-mock 使用 mock 测试 在单元测试时,有些数据需要依赖其他服务或者不好获取到,此时需要使用mock来模拟对应的函数、对象等。 mock模拟数据的python…...

单片机原理及应用:定时器/计数器综合应用
本文是《单片机原理及应用》专栏中的最后一篇文章,笔者以编译器的安装配置——51单片机简介——LED和数码管外设——开关和按键控制功能切换——外部中断系统——定时器与计数器为知识大纲,介绍了C语言编程控制51单片机的入门教程。作为收尾,…...

R语言【paleobioDB】——pbdb_intervals():通过参数选择,返回多个地层年代段的基本信息
Package paleobioDB version 0.7.0 paleobioDB 包在2020年已经停止更新,该包依赖PBDB v1 API。 可以选择在Index of /src/contrib/Archive/paleobioDB (r-project.org)下载安装包后,执行本地安装。 Usage pbdb_interval (id, ...) Arguments 参数【..…...

阅读笔记lv.1
阅读笔记 sql中各种 count结论不同存储引擎计算方式区别count() 类型 责任链模式常见场景例子(闯关游戏) sql中各种 count 结论 innodb count(*) ≈ count(1) > count(主键id) > count(普通索引列) > count(未加索引列)myisam 有专门字段记录…...

小鼠的滚动疲劳仪-转棒实验|ZL-200C小鼠转棒疲劳仪
转棒实验|ZL-200C小鼠转棒疲劳仪用于检测啮齿类动物的运动功能。通过测量动物在滚筒上行走的持续时间,来评定**神经系统*病或损坏以及药物对运动协调功能和疲劳的影响。 疲劳实验中,让小鼠在不停转动的棒上运动,肌肉会很快进入疲劳状态&#…...

平衡搜索二叉树(AVL树)
目录 前言 一、AVL树的概念 二、AVL树的定义 三、AVL树的插入 四、AVL树的旋转 4.1、右单旋 4.2、左单旋 4.3、左右双旋 4.4、右左双旋 五、AVL树的验证 5.1、 验证其为二叉搜索树 5.2、 验证其为平衡树 六、AVL树的性能 前言 二叉搜索树虽可以缩短查找的效率&…...

2024年1月12日学习总结
学习目标 完成集中学习的readme 完成联邦学习的代码编写 边学习边总结 学习内容 Introduction to Early Stopping 1、Overfitting 过拟合是所有机器学习,深度学习中可能出现的一个比较严重的问题。具体表现就是:你的模型在训练集上处理的效果非常好&…...

PCL 使用克拉默法则进行四点定球(C++详细过程版)
目录 一、算法原理二、代码实现三、计算结果本文由CSDN点云侠原创,PCL 使用克拉默法则进行四点定球(C++详细过程版),爬虫自重。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的爬虫与GPT生成的文章。 一、算法原理 已知空间内不共面的四个点,设其坐标为 A (…...
前端导致浏览器奔溃原因分析
内存泄漏 内存泄漏(Memory Leak)是指程序中已动态分配的堆内存由于某种原因程序未释放或无法释放,造成系统内存的浪费,导致程序运行速度减慢甚至系统崩溃等严重后果。(程序某个未使用的变量或者方法,长期占…...

UE5 学习系列(二)用户操作界面及介绍
这篇博客是 UE5 学习系列博客的第二篇,在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下: 【Note】:如果你已经完成安装等操作,可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作,重…...
挑战杯推荐项目
“人工智能”创意赛 - 智能艺术创作助手:借助大模型技术,开发能根据用户输入的主题、风格等要求,生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用,帮助艺术家和创意爱好者激发创意、提高创作效率。 - 个性化梦境…...

地震勘探——干扰波识别、井中地震时距曲线特点
目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波:可以用来解决所提出的地质任务的波;干扰波:所有妨碍辨认、追踪有效波的其他波。 地震勘探中,有效波和干扰波是相对的。例如,在反射波…...

【第二十一章 SDIO接口(SDIO)】
第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...
GitHub 趋势日报 (2025年06月08日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...

R语言速释制剂QBD解决方案之三
本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...
JavaScript基础-API 和 Web API
在学习JavaScript的过程中,理解API(应用程序接口)和Web API的概念及其应用是非常重要的。这些工具极大地扩展了JavaScript的功能,使得开发者能够创建出功能丰富、交互性强的Web应用程序。本文将深入探讨JavaScript中的API与Web AP…...
MySQL JOIN 表过多的优化思路
当 MySQL 查询涉及大量表 JOIN 时,性能会显著下降。以下是优化思路和简易实现方法: 一、核心优化思路 减少 JOIN 数量 数据冗余:添加必要的冗余字段(如订单表直接存储用户名)合并表:将频繁关联的小表合并成…...
解决:Android studio 编译后报错\app\src\main\cpp\CMakeLists.txt‘ to exist
现象: android studio报错: [CXX1409] D:\GitLab\xxxxx\app.cxx\Debug\3f3w4y1i\arm64-v8a\android_gradle_build.json : expected buildFiles file ‘D:\GitLab\xxxxx\app\src\main\cpp\CMakeLists.txt’ to exist 解决: 不要动CMakeLists.…...

Chromium 136 编译指南 Windows篇:depot_tools 配置与源码获取(二)
引言 工欲善其事,必先利其器。在完成了 Visual Studio 2022 和 Windows SDK 的安装后,我们即将接触到 Chromium 开发生态中最核心的工具——depot_tools。这个由 Google 精心打造的工具集,就像是连接开发者与 Chromium 庞大代码库的智能桥梁…...