【同济子豪兄斯坦福CS224W中文精讲】NetworkX代码学习笔记
文章目录
- 安装配置
- 创建图
- 可视化图
- 图数据挖掘
- 参考资料
安装配置
matplotlib中文字体设置
import networkx as nx
import matplotlib.pyplot as plt
# 魔法指令,设置后在jupyter notebook中绘制的图形会显示在输出单元格中,而不是弹出一个新窗口
%matplotlib inline # windows操作系统
plt.rcParams['font.sans-serif']=['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False # 用来正常显示负号
测试代码
plt.plot([1,2,3], [100,500,300])
plt.title('matplotlib中文字体测试', fontsize=25)
plt.xlabel('X轴', fontsize=15)
plt.ylabel('Y轴', fontsize=15)
plt.show()
创建图
内置图创建
全连接无向图:G = nx.complete_graph(7)
全连接有向图:G = nx.complete_graph(7, nx.DiGraph())
随机图:G = nx.erdos_renyi_graph(10, 0.5)
空手道俱乐部数据集:G = nx.karate_club_graph()
雨果《悲惨世界》人物关系图:G = nx.les_miserables_graph()
Florentine families graph:G = nx.florentine_families_graph()
G = nx.random_k_out_graph(10, 3, 0.5, seed=seed)
创建一个10个节点,每个节点出度为3的有向图,0.5指每条边的生成概率
G = nx.from_pandas_edgelist(df, 'White', 'Black', edge_attr=True, create_using=nx.MultiDiGraph())
从pandas的DataFrame数据中创建一个有向多重图,利用表中White列和Black列的数据创建有向图,一行数据代表一条边,表中其他列都作为这条边的属性被存储起来。另外如果一条边会对应多行数据,这些数据存储在以0、1、2…为key值的字典中,使用G.get_edge_data(node1, node2)
得到
Ego图创建
# 原图创建
n = 1000
m = 2
seed = 20532
G = nx.barabasi_albert_graph(n, m, seed=seed)
# 将原图中degree最大的节点作为ego图的中心
largest_hub, degree = sorted(G.degree(), key=itemgetter(1))[-1]
hub_ego = nx.ego_graph(G, largest_hub, radius=1) # 确定好中心节点
pos = nx.spring_layout(hub_ego, seed=seed)
nx.draw(hub_ego, pos, node_color="b", node_size=50, with_labels=False)
# 单独设置中心节点的图属性
options = {"node_size": 300, "node_color": "r"}
nx.draw_networkx_nodes(hub_ego, pos, nodelist=[largest_hub], **options)
plt.show()
连接表创建图
代码模板
# 导入 csv 文件定义的三元组连接表,构建有向图
df = pd.read_csv('triples.csv')
G = nx.DiGraph()
edges = [edge for edge in zip(df['head'], df['tail'])]
G.add_edges_from(edges) # 根据二元组顶点对列表创建图
# 可视化
pos = nx.spring_layout(G, seed=123) # 为图G的可视化生成布局,spring_layout是一种弹簧模型布局,seed=123设置了随机数种子值,保证了多次运行时得到的布局相同,增加可复现性
plt.figure(figsize=(15,15))
nx.draw(G, pos=pos, with_labels=True) # pos参数设置了节点布局信息
邻接表保存/创建图
# 将图以邻接表形式保存,邻接表形式的数据每行代表一条边,每条边的节点之间使用特定分隔符进行分隔
nx.write_edgelist(G, path="grid.edgelist", delimiter=":") # delimiter设置的是节点之间的分隔符
# 从本地文件 grid.edgelist 读取邻接表
H = nx.read_edgelist(path="grid.edgelist", delimiter=":")
常用图属性
图绘制:nx.draw()
连接数:G.size()
节点展示:G.nodes
节点数:G.number_of_nodes()
展示带属性的节点:G.node(data=True)
无向图连通域分析:nx.connected_components(H)
最大连通子图:Gcc = G.subgraph(sorted(nx.connected_components(G), key=len, reverse=True)[0])
创建节点
G.add_node()
添加单个节点
G.add_nodes_from()
从列表中添加多个节点
添加带属性的节点
方法一:add_nodes_from()
参数为节点属性字典二元组列表
方法二:add_node()
参数中写明节点属性
# 方法一
G.add_nodes_from([('关羽',{'武器': '青龙偃月刀','武力值':90,'智力值':80}),('张飞',{'武器': '丈八蛇矛','武力值':85,'智力值':75}),('吕布',{'武器':'方天画戟','武力值':100,'智力值':70})
])
# 方法二
G.add_node(0, feature=5, label=0)
创建连接
方法名与创建节点的方法名类似
# 单个连接
G.add_edge(0, 1, weight=0.5, like=3)
# 多个连接
G.add_edges_from([(1, 2, {'weight': 0.3, 'like':5}),(2, 0, {'weight': 0.1, 'like':8})
])
节点连接数
# 指定节点
node_id = 1
# 指定节点的所有相邻节点
for neighbor in G.neighbors(node_id):print("Node {} has neighbor {}".format(node_id, neighbor))
可视化图
使用NetworkX自带的可视化函数
nx.draw
,绘制不同风格的图。设置节点尺寸、节点颜色、节点边缘颜色、节点坐标、连接颜色等。
代码模板
nx.draw(G,pos, # 节点坐标(使用某种布局入spring_layout布局得到节点坐标node_color='#A0CBE2', # 节点颜色edgecolors='red', # 节点外边缘的颜色edge_color="blue", # edge的颜色node_size=100, # 节点尺寸with_labels=False,# arrowsize=10, # 如果是有向图,设置箭头尺寸width=3,
)
看一个设置每个节点坐标以可视化的例子
G = nx.Graph()
G.add_edge(1, 2)
G.add_edge(1, 3)
G.add_edge(1, 5)
G.add_edge(2, 3)
G.add_edge(3, 4)
G.add_edge(4, 5)
# 设置每个节点可视化时的坐标
pos = {1: (0, 0), 2: (-1, 0.3), 3: (2, 0.17), 4: (4, 0.255), 5: (5, 0.03)}# 设置其它可视化样式
options = {"font_size": 36,"node_size": 3000,"node_color": "white","edgecolors": "black", "linewidths": 5, # 节点线宽"width": 5, # edge线宽
}nx.draw_networkx(G, pos, **options)ax = plt.gca()
ax.margins(0.20) # 在图的边缘留白,防止节点被截断
plt.axis("off")
plt.show()
在看一个单独设置各个节点样式的例子
G = nx.house_graph()
# 设置节点坐标
pos = {0: (0, 0), 1: (1, 0), 2: (0, 1), 3: (1, 1), 4: (0.5, 2.0)}
plt.figure(figsize=(10,8))
# 绘制“墙角”的四个节点
nx.draw_networkx_nodes(G, pos, node_size=3000, nodelist=[0, 1, 2, 3], node_color="tab:blue")
# 绘制“屋顶”节点
nx.draw_networkx_nodes(G, pos, node_size=2000, nodelist=[4], node_color="tab:orange")
# 绘制连接
nx.draw_networkx_edges(G, pos, alpha=0.5, width=6)
plt.axis("off") # 去掉坐标轴
plt.show()
自定义节点图标的处理
# 给每个节点添加各自的图片
for n in G.nodes:xf, yf = ax.transData.transform(pos[n]) # data坐标 转 display坐标xa, ya = fig.transFigure.inverted().transform((xf, yf)) # display坐标 转 figure坐标a = plt.axes([xa - icon_center, ya - icon_center, icon_size, icon_size])a.imshow(G.nodes[n]["image"])a.axis("off")
处理.gz文件
# 通过gzip库和shutil库解压缩.gz文件展示结构
import gzip
import shutil
input_file = 'knuth_miles.txt.gz'
output_file = 'knuth_miles.txt'with gzip.open(input_file, 'rb') as f_in, open(output_file, 'wb') as f_out:shutil.copyfileobj(f_in, f_out)# 文件展示
with open('knuth_miles.txt', 'r') as file:content = file.read()print(content)
按照节点度以可视化模板
# 可视化函数
def draw(G, pos, measures, measure_name):nodes = nx.draw_networkx_nodes(G, pos, node_size=250, cmap=plt.cm.plasma, node_color=list(measures.values()),nodelist=measures.keys())nodes.set_norm(mcolors.SymLogNorm(linthresh=0.01, linscale=1, base=10))# labels = nx.draw_networkx_labels(G, pos)edges = nx.draw_networkx_edges(G, pos)# plt.figure(figsize=(10,8))plt.title(measure_name)plt.colorbar(nodes)plt.axis('off')plt.show()draw(G, pos, dict(G.degree()), 'Node Degree')
图数据挖掘
pagerank算法
计算节点重要度
代码示例
G = nx.star_graph(7)
pagerank = nx.pagerank(G, alpha=0.8)
节点连接数
G.degree() # 得到每个节点的连接数
degree_sequence = sorted((d for n, d in G.degree()), reverse=True)# 绘制degree rank plot
plt.figure(figsize=(12,8))
plt.plot(degree_sequence, "b-", marker="o")
plt.title('Degree Rank Plot', fontsize=20)
plt.ylabel('Degree', fontsize=25)
plt.xlabel('Rank', fontsize=25)
plt.tick_params(labelsize=20) # 设置坐标文字大小
plt.show()# degree直方图
X = np.unique(degree_sequence, return_counts=True)[0]
Y = np.unique(degree_sequence, return_counts=True)[1]
plt.figure(figsize=(12,8))
plt.bar(X, Y)
plt.title('Degree Histogram', fontsize=20)
plt.ylabel('Number', fontsize=25)
plt.xlabel('Degree', fontsize=25)
plt.tick_params(labelsize=20) # 设置坐标文字大小
plt.show()
图特征分析
# 半径
nx.radius(G)
# 直径
nx.diameter(G)
# 偏心度:每个节点到图中其它节点的最远距离
nx.eccentricity(G)
# 中心节点,偏心度与半径相等的节点
nx.center(G)
# 外围节点,偏心度与直径相等的节点
nx.periphery(G)
# 图中连接的稠密程度
nx.density(G)
# 最短距离
pathlengths = []
for v in G.nodes():spl = nx.single_source_shortest_path_length(G, v)for p in spl:print('{} --> {} 最短距离 {}'.format(v, p, spl[p]))pathlengths.append(spl[p])
# 平均最短距离
sum(pathlengths) / len(pathlengths)
# 不同距离的节点对个数
dist = {}
for p in pathlengths:if p in dist:dist[p] += 1else:dist[p] = 1
节点重要度特征
无向图
nx.degree_centrality(G)
nx.eigenvector_centrality(G)
必经之地:nx.betweenness_centrality(G)
去哪都近:nx.closeness_centrality(G)
nx.pagerank(DiG, alpha=0.85)
nx.katz_centrality(G, alpha=0.1, beta=1.0)
有向图
nx.in_degree_centrality(DiG)
nx.out_degree_centrality(DiG)
nx.eigenvector_centrality_numpy(DiG)
社群属性
三角形个数:nx.triangles(G)
聚集系数:nx.clustering(G)
重要的全图特征
桥:nx.bridges(G)
共同的邻居:nx.common_neighbors(G, 0, 4)
katz index计算
import networkx as nx
import numpy as np
from numpy.linalg import inv
G = nx.karate_club_graph()# 计算主特征向量
L = nx.normalized_laplacian_matrix(G)
e = np.linalg.eigvals(L.A)
print('最大特征值', max(e))# 折减系数
beta = 1/max(e)# 创建单位矩阵
I = np.identity(len(G.nodes))# 计算 Katz Index
S = inv(I - nx.to_numpy_array(G)*beta) - I
两个节点是否连通:nx.has_path(G, source='昌吉东路', target='同济大学')
任意两个节点之间的最短路径:nx.shortest_path(G, source='昌吉东路', target='同济大学', weight='time')
最短路径长度:nx.shortest_path_length(G, source='昌吉东路', target='同济大学', weight='time')
全图平均最短路径长度:nx.average_shortest_path_length(G, weight='time')
graphlet个数计算
import networkx as nx
import matplotlib.pyplot as plt
%matplotlib inline
import itertoolsG = nx.karate_club_graph()
target = nx.complete_graph(3)
num = 0
for sub_nodes in itertools.combinations(G.nodes(), len(target.nodes())): # 遍历全图中,符合graphlet节点个数的所有节点组合subg = G.subgraph(sub_nodes) # 从全图中抽取出子图if nx.is_connected(subg) and nx.is_isomorphic(subg, target): # 如果子图是完整连通域,并且符合graphlet特征,输出原图节点编号num += 1print(subg.edges())
参考资料
- 同济子豪兄课程repo地址:https://github.com/TommyZihao/zihao_course/tree/main/CS224W
相关文章:

【同济子豪兄斯坦福CS224W中文精讲】NetworkX代码学习笔记
文章目录 安装配置创建图可视化图图数据挖掘参考资料 安装配置 matplotlib中文字体设置 import networkx as nx import matplotlib.pyplot as plt # 魔法指令,设置后在jupyter notebook中绘制的图形会显示在输出单元格中,而不是弹出一个新窗口 %matplo…...

java+ssm+vue代码视频学习讲解
一、ssm 1.项目文件结构 2.数据库连接信息 3.其他配置信息 4.java代码文件目录介绍 5.entity层代码 6.controller,service,dao,entity层之间的关系 7.controller层代码 8.登陆拦截功能实现 AuthorizationInterceptor.java 9.文件上传功能 …...

[计算机提升] 创建FTP共享
4.7 创建FTP共享 4.7.1 FTP介绍 在Windows系统中,FTP共享是一种用于在网络上进行文件传输的标准协议。它可以让用户通过FTP客户端程序访问并下载或上传文件,实现文件共享。 FTP共享的用途非常广泛,例如可以让多个用户共享文件、进行文件备份…...

R语言将list转变为dataframe(常用)
在R语言使用中常常遇到list文件需要转变为dataframe格式文件处理。这是需要写循环来进行转换。IOBR查看其收录的相关基因集(自备)_iobr_deg-CSDN博客 示例文件 list文件: 循环转换为dataframe data <- signature_tme dat <- as.data.frame(t(sapply(data, …...

【JAVA】OPENGL+TIFF格式图片,不同阈值旋转效果
有些科学研究领域会用到一些TIFF格式图片,由于是多张图片相互渐变,看起来比较有意思: import java.io.IOException; import java.text.SimpleDateFormat; import java.util.Date; import java.util.logging.*;/*** 可以自已定义日志打印格式…...

Linux系统中使用ln命令创建软连接
大家应该和我一样,第一次听到软连接这个词时感觉好高级啊,但其实也就那么回事,你完全可以将他类比为Windows系统中的快捷方式。 链接只是一个指向,并不是物理移动,类似Windows系统的快捷方式 1.功能和语法 功能&…...

Spark---RDD(Key-Value类型转换算子)
文章目录 1.RDD Key-Value类型1.1 partitionBy1.2 reduceByKey1.3 groupByKeyreduceByKey和groupByKey的区别分区间和分区内 1.4 aggregateByKey获取相同key的value的平均值 1.5 foldByKey1.6 combineByKey1.7 sortByKey1.8 join1.9 leftOuterJoin1.10 cogroup 1.RDD Key-Value…...
后台代码New出来DataGridTextColumn 动态添加到DataGrain 设置 Margin属性
在 WPF 中给 DataGridTextColumn 设置 MarginProperty 可以通过自定义 DataGridTemplateColumn 来实现。以下是一个示例代码: <DataGrid><DataGrid.Columns><DataGridTemplateColumn><DataGridTemplateColumn.CellTemplate><DataTempla…...
MySQL面试题(下)
09)查询学过「张三」老师授课的同学的信息 SELECTs.*,c.cname,t.tnameFROMt_mysql_teacher t,t_mysql_student s,t_mysql_course c,t_mysql_score scWHEREt.tidc.tid and c.cidsc.cid and sc.sids.sid and tname 张三 10)查询没有学全所有课程的同学的…...
【Linux】如何检查Linux用户是否具有sudo权限
问题背景或前提知识 在Linux系统中,sudo(superuser do)是一个重要的命令,它允许普通用户以系统管理员的身份执行命令。了解用户是否拥有sudo权限对于系统管理和安全性来说是非常重要的。 技术名词解释 sudo:一种程序…...
2024.1.13 Kafka六大机制和Structured Streaming
目录 一 . Kafka中生产者数据分发策略 二. Kafka消费者的负载均衡机制 三 . 数据不丢失机制 生产者端是如何保证数据不丢失的呢? Broker端如何保证数据不丢失 消费端如何保证数据不丢失 Kafka中消费者如何对数据仅且只消费一次 四 . 启动Kafka eagle命令 数…...

遥感影像-语义分割数据集:Landsat8云数据集详细介绍及训练样本处理流程
原始数据集详情 简介:该云数据集包括RGB三通道的高分辨率图像,在全球不同区域的分辨率15米。这些图像采集自Lansat8的五种主要土地覆盖类型,即水、植被、湿地、城市、冰雪和贫瘠土地。 KeyValue卫星类型landsat8覆盖区域未知场景水、植被、…...
YOLOV8在coco128上的训练
coco128是coco数据集的子集只有128张图片 训练代码main.py from ultralytics import YOLO# Load a model model YOLO("yolov8n.yaml") # build a new model from scratch model YOLO("yolov8n.pt") # load a pretrained model (recommended for trai…...
设计模式——享元模式
享元模式(Flyweight Pattern)是一种结构型设计模式,它的主要目的是通过共享已存在的对象来大幅度减少需要创建的对象数量,从而降低系统内存消耗和提高性能。它通过将对象的状态划分为内部状态(Intrinsic State…...

【Python机器学习】分类器的不确定估计——决策函数
scikit-learn接口的分类器能够给出预测的不确定度估计,一般来说,分类器会预测一个测试点属于哪个类别,还包括它对这个预测的置信程度。 scikit-learn中有两个函数可以用于获取分类器的不确定度估计:decidion_function和predict_pr…...
云原生周刊:K8sGPT 加入 CNCF | 2024.1.8
开源项目推荐 VolSync VolSync 使用 rsync 或 rclone 在集群之间异步复制 Kubernetes 持久卷。它还支持通过 Restic 创建持久卷的备份。 KubeClarity KubeClarity 是一种用于检测和管理软件物料清单 (SBOM) 以及容器映像和文件系统漏洞的工具。它扫描运行时 K8s 集群和 CI/…...

LightGBM原理和调参
背景知识 LightGBM(Light Gradient Boosting Machine)是一个实现GBDT算法的框架,具有支持高效率的并行训练、更快的训练速度、更低的内存消耗、更好的准确率、支持分布式可以处理海量数据等优点。 普通的GBDT算法不支持用mini-batch的方式训练,在每一次…...

ROS无人机开发常见错误
飞控部分 一、解锁时飞控不闪红灯,无任何反应,地面站也无报错 解决办法: 打开地面站的遥控器一栏 首先检查右下角Channel Monitor是否有识别出遥控各通道的值,如果没有,检查遥控器是否打开,遥控器和接收…...
Baumer工业相机堡盟工业相机如何联合NEOAPI SDK和OpenCV实现相机图像转换为AVI视频格式(C#)
Baumer工业相机堡盟工业相机如何联合NEOAPI SDK和OpenCV实现相机图像转换为视频格式(C#) Baumer工业相机Baumer工业相机的图像转换为OpenCV的图像的技术背景在NEOAPI SDK里实现相机图像转换为视频格式 工业相机通过OpenCV实现相机图像转换为视频格式的优…...

第一次面试总结 - 迈瑞医疗 - 软件测试
🧸欢迎来到dream_ready的博客,📜相信您对专栏 “本人真实面经” 很感兴趣o (ˉ▽ˉ;) 专栏 —— 本人真实面经,更多真实面试经验,中大厂面试总结等您挖掘 注:此次面经全靠小嘴八八,没…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型
摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...

Debian系统简介
目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版ÿ…...
可靠性+灵活性:电力载波技术在楼宇自控中的核心价值
可靠性灵活性:电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中,电力载波技术(PLC)凭借其独特的优势,正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据,无需额外布…...

基于Docker Compose部署Java微服务项目
一. 创建根项目 根项目(父项目)主要用于依赖管理 一些需要注意的点: 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件,否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...

全志A40i android7.1 调试信息打印串口由uart0改为uart3
一,概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本:2014.07; Kernel版本:Linux-3.10; 二,Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01),并让boo…...

【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...

客户案例 | 短视频点播企业海外视频加速与成本优化:MediaPackage+Cloudfront 技术重构实践
01技术背景与业务挑战 某短视频点播企业深耕国内用户市场,但其后台应用系统部署于东南亚印尼 IDC 机房。 随着业务规模扩大,传统架构已较难满足当前企业发展的需求,企业面临着三重挑战: ① 业务:国内用户访问海外服…...

聚六亚甲基单胍盐酸盐市场深度解析:现状、挑战与机遇
根据 QYResearch 发布的市场报告显示,全球市场规模预计在 2031 年达到 9848 万美元,2025 - 2031 年期间年复合增长率(CAGR)为 3.7%。在竞争格局上,市场集中度较高,2024 年全球前十强厂商占据约 74.0% 的市场…...

STM32标准库-ADC数模转换器
文章目录 一、ADC1.1简介1. 2逐次逼近型ADC1.3ADC框图1.4ADC基本结构1.4.1 信号 “上车点”:输入模块(GPIO、温度、V_REFINT)1.4.2 信号 “调度站”:多路开关1.4.3 信号 “加工厂”:ADC 转换器(规则组 注入…...
游戏开发中常见的战斗数值英文缩写对照表
游戏开发中常见的战斗数值英文缩写对照表 基础属性(Basic Attributes) 缩写英文全称中文释义常见使用场景HPHit Points / Health Points生命值角色生存状态MPMana Points / Magic Points魔法值技能释放资源SPStamina Points体力值动作消耗资源APAction…...