回归预测 | Matlab实现SSA-CNN-LSTM-Attention麻雀优化卷积长短期记忆神经网络注意力机制多变量回归预测(SE注意力机制)
回归预测 | Matlab实现SSA-CNN-LSTM-Attention麻雀优化卷积长短期记忆神经网络注意力机制多变量回归预测(SE注意力机制)
目录
- 回归预测 | Matlab实现SSA-CNN-LSTM-Attention麻雀优化卷积长短期记忆神经网络注意力机制多变量回归预测(SE注意力机制)
- 预测效果
- 基本描述
- 程序设计
- 参考资料
预测效果
基本描述
1.Matlab实现SSA-CNN-LSTM-Attention麻雀优化卷积长短期记忆神经网络注意力机制多变量回归预测(SE注意力机制);
2.运行环境为Matlab2021b;
3.data为数据集,excel数据,输入多个特征,输出单个变量,多变量回归预测,
main.m为主程序,运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MSE、MAE、MAPE多指标评价;
5.麻雀算法优化学习率,隐藏层节点,正则化系数;### 模型描述
注意力机制模块:
SEBlock(Squeeze-and-Excitation Block)是一种聚焦于通道维度而提出一种新的结构单元,为模型添加了通道注意力机制,该机制通过添加各个特征通道的重要程度的权重,针对不同的任务增强或者抑制对应的通道,以此来提取有用的特征。该模块的内部操作流程如图,总体分为三步:首先是Squeeze 压缩操作,对空间维度的特征进行压缩,保持特征通道数量不变。融合全局信息即全局池化,并将每个二维特征通道转换为实数。实数计算公式如公式所示。该实数由k个通道得到的特征之和除以空间维度的值而得,空间维数为H*W。其次是Excitation激励操作,它由两层全连接层和Sigmoid函数组成。如公式所示,s为激励操作的输出,σ为激活函数sigmoid,W2和W1分别是两个完全连接层的相应参数,δ是激活函数ReLU,对特征先降维再升维。最后是Reweight操作,对之前的输入特征进行逐通道加权,完成原始特征在各通道上的重新分配。
程序设计
- 完整程序和数据获取方式:私信博主回复Matlab实现SSA-CNN-LSTM-Attention麻雀优化卷积长短期记忆神经网络注意力机制多变量回归预测(SE注意力机制)。
%% 优化算法参数设置
SearchAgents_no = 8; % 数量
Max_iteration = 5; % 最大迭代次数
dim = 3; % 优化参数个数
lb = [1e-3,10 1e-4]; % 参数取值下界(学习率,隐藏层节点,正则化系数)
ub = [1e-2, 30,1e-1]; % 参数取值上界(学习率,隐藏层节点,正则化系数)fitness = @(x)fical(x,num_dim,num_class,p_train,t_train,T_train);[Best_score,Best_pos,curve]=SSA(SearchAgents_no,Max_iteration,lb ,ub,dim,fitness)
Best_pos(1, 2) = round(Best_pos(1, 2));
best_hd = Best_pos(1, 2); % 最佳隐藏层节点数
best_lr= Best_pos(1, 1);% 最佳初始学习率
best_l2 = Best_pos(1, 3);% 最佳L2正则化系数%% 建立模型
lgraph = layerGraph(); % 建立空白网络结构
tempLayers = [sequenceInputLayer([num_dim, 1, 1], "Name", "sequence") % 建立输入层,输入数据结构为[num_dim, 1, 1]sequenceFoldingLayer("Name", "seqfold")]; % 建立序列折叠层
lgraph = addLayers(lgraph, tempLayers); % 将上述网络结构加入空白结构中
tempLayers = [convolution2dLayer([3, 1], 16, "Name", "conv_1", "Padding", "same") % 建立卷积层,卷积核大小[3, 1],16个特征图reluLayer("Name", "relu_1")
tempLayers = [sequenceUnfoldingLayer("Name", "sequnfold") % 建立序列反折叠层flattenLayer("Name", "flatten") % 网络铺平层fullyConnectedLayer(num_class, "Name", "fc") % 分类层
lgraph = addLayers(lgraph, tempLayers); % 将上述网络结构加入空白结构中
lgraph = connectLayers(lgraph, "seqfold/out", "conv_1"); % 折叠层输出 连接 卷积层输入
lgraph = connectLayers(lgraph, "seqfold/miniBatchSize", "sequnfold/miniBatchSize"); %% 参数设置
options = trainingOptions('adam', ... % Adam 梯度下降算法'MaxEpochs', 500,... % 最大训练次数 'InitialLearnRate', best_lr,... % 初始学习率为0.001'L2Regularization', best_l2,... % L2正则化参数'LearnRateSchedule', 'piecewise',... % 学习率下降'LearnRateDropFactor', 0.1,... % 学习率下降因子 0.1'LearnRateDropPeriod', 400,... % 经过训练后 学习率为 0.001*0.1'Shuffle', 'every-epoch',... % 每次训练打乱数据集'ValidationPatience', Inf,... % 关闭验证'Plots', 'training-progress',... % 画出曲线'Verbose', false);%% 训练
net = trainNetwork(p_train, t_train, lgraph, options);
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229
相关文章:

回归预测 | Matlab实现SSA-CNN-LSTM-Attention麻雀优化卷积长短期记忆神经网络注意力机制多变量回归预测(SE注意力机制)
回归预测 | Matlab实现SSA-CNN-LSTM-Attention麻雀优化卷积长短期记忆神经网络注意力机制多变量回归预测(SE注意力机制) 目录 回归预测 | Matlab实现SSA-CNN-LSTM-Attention麻雀优化卷积长短期记忆神经网络注意力机制多变量回归预测(SE注意力…...
css垂直水平居中的几种实现方式
垂直水平居中的几种实现方式 一、固定宽高: 1、定位 margin-top margin-left .box-container{position: relative;width: 300px;height: 300px;}.box-container .box {width: 200px; height: 100px;position: absolute; left: 50%; top: 50%;margin-top: -50px;…...

OpenHarmony之hdc
OpenHarmony之hdc 简介 hdc(OpenHarmony Device Connector)是 OpenHarmony 为开发人员提供的用于调试的命令行工具,通过该工具可以在Windows/Linux/MacOS等系统上与开发机或者模拟器进行交互。 类似于Android的adb,和adb类似&a…...

【爬虫实战】-爬取微博之夜盛典评论,爬取了1.7w条数据
前言: TaoTao之前在前几期推文中发布了一个篇weibo评论的爬虫。主要就是采集评论区的数据,包括评论、评论者ip、评论id、评论者等一些信息。然后有很多的小伙伴对这个代码很感兴趣。TaoTao也都给代码开源了。由于比较匆忙,所以没来得及去讲这…...

CST2024的License服务成功启动,仍报错——“The desired daemon is down...”,适用于任何版本!基础设置遗漏!
CST2024的License服务成功启动,仍报错——“The desired daemon is down…”,适用于任何版本!基础设置遗漏! CST2024的License服务成功启动后报错 若不能成功启动License服务,有可能是你的计算机名称带中文ÿ…...

matlab中any()函数用法
一、帮助文档中的介绍 B any(A) 沿着大小不等于 1 的数组 A 的第一维测试所有元素为非零数字还是逻辑值 1 (true)。实际上,any 是逻辑 OR 运算符的原生扩展。 二、解读 分两步走: ①确定维度;②确定运算规则 以下面二维数组为例 >>…...

Apache ECharts | 一个数据可视化图表库
文章目录 1、简介1.1、主要特点1.2、使用场景 2、安装方式一:从下载的源代码或编译产物安装方法二:从 npm 安装方法三:⭐定制安装echarts.js 3、使用 官网: 英语:https://echarts.apache.org/en/index.html 中文&a…...

m1 + swoole(hyperf) + yasd + phpstorm 安装和debug
参考文档 Mac M1安装报错 checking for boost... configure: error: lib boost not found. Try: install boost library Issue #89 swoole/yasd GitHub 1.安装boost库 brew install boostbrew link boost 2.下载yasd git clone https://github.com/swoole/yasd.git 3.编…...

group by 查询慢的话,如何优化?
1、说明 根据一定的规则,进行分组。 group by可能会慢在哪里?因为它既用到临时表,又默认用到排序。有时候还可能用到磁盘临时表。 如果执行过程中,会发现内存临时表大小到达了上限(控制这个上限的参数就是tmp_table…...

【重学C语言】一、C语言简介
【重学C语言】一、C语言简介 什么是编程语言?编程语言 C语言发展史C语言标准变迁开发软件CLion安装步骤 VIsual Studio安装步骤 Clion 和 VS2022 绑定 电脑常识 什么是编程语言? 人类语言:语言就是人类进行沟通交流的表达方式,应…...

【MATLAB源码-第109期】基于matlab的哈里斯鹰优化算发(HHO)机器人栅格路径规划,输出做短路径图和适应度曲线。
操作环境: MATLAB 2022a 1、算法描述 哈里斯鹰优化算法(Harris Hawk Optimization, HHO)是一种受自然界捕食行为启发的优化算法。它基于哈里斯鹰的捕猎策略和行为模式,主要用于解决各种复杂的优化问题。这个算法的核心特征在于…...
NestJS 如何自定义中间件以及实际项目基于中间件提升项目开发效率
前言 NestJS 作为一个强大的 Node.js 框架,允许你通过中间件对请求和响应进行处理。中间件的概念在其他许多框架中也存在,它们在请求处理流程的早期执行,因此非常适合执行如日志记录、请求验证、设置响应头等任务。 在这篇教程中࿰…...

CMake入门教程【核心篇】设置和使用缓存变量
😈「CSDN主页」:传送门 😈「Bilibil首页」:传送门 😈「动动你的小手」:点赞👍收藏⭐️评论📝 文章目录 概述设置缓存变量使用缓存变量更改缓存变量完整代码示例实战使用技巧注意事项总结与分析...
MinIO (五) .net core实现分片上传
开发环境 Win11 vs2022 appsettings.json添加配置项 //minIO配置"MinIO": {//服务器IP"Endpoint": "192.168.xx.xx:9090",//账号"AccessKey": "3xR7i4zs1vLnxxxxxxxx",//密码"SecretKey": "P6bAnyzJm47Ub…...

如何有效提高矢量网络分析仪的动态范围
动态范围是网络分析仪(VNA)接收机的最大输入功率与最小可测量功率(本底噪声)之间的差值,如图所示,要使测量有效,输入信号必须在这些边界内。 如果需要测量信号幅度非常大的变化,例如…...

Python 安卓开发:Kivy、BeeWare、Flet、Flutter
kivy:https://github.com/kivy python-for-android :https://python-for-android.readthedocs.io/en/latest/ BeeWare:https://docs.beeware.org/en/latest/ Flet:https://github.com/flet-dev/flet 把 PySide6 移植到安卓上去&a…...
50天精通Golang(第16天)
beego框架介绍和流程分析 beego官方文档:https://beego.me/ 一、beego框架介绍 1.1 beego框架介绍–beego简介 1.1.1 什么是beego beego是一个使用Go语言来开发WEB引用的GoWeb框架,该框架起始于2012年,由一位中国的程序员编写并进行公开…...

imx6ull基于yocto工程的l汇编点亮ed
通过汇编点亮led 在裸机状态下通过汇编点亮led,即没有操作系统,(uboot kernel rootfs 都不需要实现)。 led点亮原理 1.GPIO复用 根据原理图,找到led对应的引脚(pin),复用为GPIO(只有GPIO才能…...
vue 前端等比例压缩图片(再转换成文件后上传后端)
前端压缩图片总的来说还是转base64 然后等比例放小宽和高 这个是上次压缩图片的一个扩展 压缩完之后 再将base64 转成blob再转成文件然后再上传 一生要强的前端崽子(后端不支持base64上传) 自己改吧改吧 // 图片上传async changePic(e) {this.isshang…...

解决在eclipse2021中,用mysql-connector-java-8.0.18.jar不兼容,导致无法访问数据库问题
1.环境场景 组件版本mysql5.7.44mysql-connector-java80.18 2. 问题描述 报mysql-connector-java 驱动连不上mysql数据库。 3. 可能的原因分析 查看数据库连接句柄是否对 如果数据库连接句柄中没有 useSSLfalse 的话可能会导致这样的问题。 就像下面这样: jdb…...
【解密LSTM、GRU如何解决传统RNN梯度消失问题】
解密LSTM与GRU:如何让RNN变得更聪明? 在深度学习的世界里,循环神经网络(RNN)以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而,传统RNN存在的一个严重问题——梯度消失&#…...
1688商品列表API与其他数据源的对接思路
将1688商品列表API与其他数据源对接时,需结合业务场景设计数据流转链路,重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点: 一、核心对接场景与目标 商品数据同步 场景:将1688商品信息…...
高防服务器能够抵御哪些网络攻击呢?
高防服务器作为一种有着高度防御能力的服务器,可以帮助网站应对分布式拒绝服务攻击,有效识别和清理一些恶意的网络流量,为用户提供安全且稳定的网络环境,那么,高防服务器一般都可以抵御哪些网络攻击呢?下面…...
LeetCode - 199. 二叉树的右视图
题目 199. 二叉树的右视图 - 力扣(LeetCode) 思路 右视图是指从树的右侧看,对于每一层,只能看到该层最右边的节点。实现思路是: 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...

R 语言科研绘图第 55 期 --- 网络图-聚类
在发表科研论文的过程中,科研绘图是必不可少的,一张好看的图形会是文章很大的加分项。 为了便于使用,本系列文章介绍的所有绘图都已收录到了 sciRplot 项目中,获取方式: R 语言科研绘图模板 --- sciRplothttps://mp.…...

WPF八大法则:告别模态窗口卡顿
⚙️ 核心问题:阻塞式模态窗口的缺陷 原始代码中ShowDialog()会阻塞UI线程,导致后续逻辑无法执行: var result modalWindow.ShowDialog(); // 线程阻塞 ProcessResult(result); // 必须等待窗口关闭根本问题:…...

【Linux】Linux安装并配置RabbitMQ
目录 1. 安装 Erlang 2. 安装 RabbitMQ 2.1.添加 RabbitMQ 仓库 2.2.安装 RabbitMQ 3.配置 3.1.启动和管理服务 4. 访问管理界面 5.安装问题 6.修改密码 7.修改端口 7.1.找到文件 7.2.修改文件 1. 安装 Erlang 由于 RabbitMQ 是用 Erlang 编写的,需要先安…...

Linux 下 DMA 内存映射浅析
序 系统 I/O 设备驱动程序通常调用其特定子系统的接口为 DMA 分配内存,但最终会调到 DMA 子系统的dma_alloc_coherent()/dma_alloc_attrs() 等接口。 关于 dma_alloc_coherent 接口详细的代码讲解、调用流程,可以参考这篇文章,我觉得写的非常…...
6️⃣Go 语言中的哈希、加密与序列化:通往区块链世界的钥匙
Go 语言中的哈希、加密与序列化:通往区块链世界的钥匙 一、前言:离区块链还有多远? 区块链听起来可能遥不可及,似乎是只有密码学专家和资深工程师才能涉足的领域。但事实上,构建一个区块链的核心并不复杂,尤其当你已经掌握了一门系统编程语言,比如 Go。 要真正理解区…...
如何通过git命令查看项目连接的仓库地址?
要通过 Git 命令查看项目连接的仓库地址,您可以使用以下几种方法: 1. 查看所有远程仓库地址 使用 git remote -v 命令,它会显示项目中配置的所有远程仓库及其对应的 URL: git remote -v输出示例: origin https://…...