深度学习15—(迁移学习)冻结和解冻神经网络模型的参数
冻结与解冻代码:
def freeze_net(net):if not net:returnfor p in net.parameters():p.requires_grad = Falsedef unfreeze_net(net):if not net:returnfor p in net.parameters():p.requires_grad = True
这段代码定义了两个函数:`freeze_net` 和 `unfreeze_net`,这两个函数的目的是分别冻结和解冻一个神经网络模型的参数,控制是否对模型参数进行梯度计算。以下是对这两个函数的详细解释:
# 当调用此函数后,模型的参数将不再参与梯度计算,即在反向传播过程中不会更新这些参数的梯度值
# 输入参数 net 是一个 PyTorch 模型对象
def freeze_net(net):# 检查 net 是否为 None 或者为空,如果是则直接返回,不进行任何操作if not net:return# 通过设置 p.requires_grad = False,将参数的梯度计算设置为不可用(冻结)for p in net.parameters():p.requires_grad = False# 当调用此函数后,模型的参数将重新参与梯度计算,即在反向传播过程中会更新这些参数的梯度值
def unfreeze_net(net):# 检查 net 是否为 None 或者为空,如果是则直接返回,不进行任何操作if not net:return# 对模型的每个参数进行遍历,通过设置 p.requires_grad = True,将参数的梯度计算设置为可用(解冻)for p in net.parameters():p.requires_grad = True
这两个函数对于模型微调(fine-tuning)和迁移学习(transfer learning)等场景非常有用。例如,在迁移学习中,你可能希望冻结预训练模型的一部分参数,只更新模型的最后几层以适应新任务。通过这两个函数,可以方便地控制模型参数的梯度计算状态。
相关文章:
深度学习15—(迁移学习)冻结和解冻神经网络模型的参数
冻结与解冻代码: def freeze_net(net):if not net:returnfor p in net.parameters():p.requires_grad Falsedef unfreeze_net(net):if not net:returnfor p in net.parameters():p.requires_grad True 这段代码定义了两个函数:freeze_net 和 unfree…...
强化学习应用(八):基于Q-learning的无人机物流路径规划研究(提供Python代码)
一、Q-learning简介 Q-learning是一种强化学习算法,用于解决基于马尔可夫决策过程(MDP)的问题。它通过学习一个价值函数来指导智能体在环境中做出决策,以最大化累积奖励。 Q-learning算法的核心思想是通过不断更新一个称为Q值的…...
常见面试题之HTML
行内元素有哪些?块级元素有哪些? 空(void)元素有那些? HTML 中的行内元素(inline elements)通常用于在一行内显示,不会独占一行的空间。常见的行内元素有: <span>:用于对文本…...
数据结构与算法教程,数据结构C语言版教程!(第三部分、栈(Stack)和队列(Queue)详解)六
第三部分、栈(Stack)和队列(Queue)详解 栈和队列,严格意义上来说,也属于线性表,因为它们也都用于存储逻辑关系为 "一对一" 的数据,但由于它们比较特殊,因此将其单独作为一章,做重点讲解。 使用栈…...
使用Docker部署PDF多功能工具Stirling-PDF
1.服务器上安装docker 安装比较简单,这种安装的Docker不是最新版本,不过对于学习够用了,依次执行下面命令进行安装。 sudo apt install docker.io sudo systemctl start docker sudo systemctl enable docker 查看是否安装成功 $ docker …...
linux安装系统遇到的问题
这两天打算攻克下来网络编程,发现这也确实是很重要的一个东西,但我就奇了怪了,老师就压根没提,反正留在我印象的就一个tcp/ip七层网络。也说正好,把linux命令也熟悉熟悉,拿着我大一课本快速过过 连接cento…...
groovy XmlParser 递归遍历 xml 文件,修改并保存
使用 groovy.util.XmlParser 解析 xml 文件,对文件进行修改(新增标签),然后保存。 是不是 XmlParser 没有提供方法遍历每个节点,难道要自己写? 什么是递归? 不用说,想必都懂得~ …...
小程序基础学习(多插槽)
先创建插槽 定义多插槽的每一个插槽的属性 在js文件中启用多插槽 在页面使用多插槽 组件代码 <!--components/my-slots/my-slots.wxml--><view class"container"><view class"left"> <slot name"left" ></slot>&…...
爬虫补环境jsdom、proxy、Selenium案例:某条
声明: 该文章为学习使用,严禁用于商业用途和非法用途,违者后果自负,由此产生的一切后果均与作者无关 一、简介 爬虫逆向补环境的目的是为了模拟正常用户的行为,使爬虫看起来更像是一个真实的用户在浏览网站。这样可以…...
电子学会C/C++编程等级考试2021年09月(四级)真题解析
C/C++编程(1~8级)全部真题・点这里 第1题:最佳路径 如下所示的由正整数数字构成的三角形: 7 3 8 8 1 0 2 7 4 4 4 5 2 6 5 从三角形的顶部到底部有很多条不同的路径。对于每条路径,把路径上面的数加起来可以得到一个和,和最大的路径称为最佳路径。你的任务就是求出最佳路径…...
DevExpress历史安装文件包集合
Components - DevExpress.NET组件安装包此安装程序包括所有 .NET Framework、.NET Core 3 和 .NET 5、ASP.NET Core 和 HTML/JavaScript 组件和库(Web和桌面应用程序开发只需要安装此文件即可)。 注意:自DevExpress21.1版本之后,该…...
科技云报道:“存算一体”是大模型AI芯片的破局关键?
科技云报道原创。 在AI发展历史上,曾有两次“圣杯时刻”。 第一次发生在2012年10月,卷积神经网络(CNN)算法凭借比人眼识别更低的错误率,打开了计算机视觉的应用盛世。 第二次是2016年3月,DeepMind研发的…...
watch监听一个对象中的属性 - Vue篇
vue中提供了watch方法,可以监听data内的某些数据的变动,触发相应的方法。 1.监听一个对象 <script>export default {data() {return {obj: {name: ,code: ,timePicker:[]}}},watch: {obj: {handler(newVal, oldVal) {//todo},immediate: true,deep…...
Spark---RDD序列化
文章目录 1 什么是序列化2.RDD中的闭包检查3.Kryo 序列化框架 1 什么是序列化 序列化是指 将对象的状态信息转换为可以存储或传输的形式的过程。 在序列化期间,对象将其当前状态写入到临时或持久性存储区。以后,可以通过从存储区中读取或反序列化对象的…...
Xtuner大模型微调
Xtuner大模型微调 一、课程笔记 文档链接:https://github.com/InternLM/tutorial/blob/main/xtuner/README.md 视频链接: https://www.bilibili.com/video/BV1yK4y1B75J/ 大模型微调 大模型的训练利用了各类数据,可以说是一个通才ÿ…...
JavaScript基础04
1 - 数组 1.1 数组的概念 数组可以把一组相关的数据一起存放,并提供方便的访问(获取)方式。 数组是指一组数据的集合,其中的每个数据被称作元素,在数组中可以存放任意类型的元素。数组是一种将一组数据存储在单个变量名下的优雅…...
HarmonyOS@Observed装饰器和@ObjectLink装饰器:嵌套类对象属性变化
Observed装饰器和ObjectLink装饰器:嵌套类对象属性变化 上文所述的装饰器仅能观察到第一层的变化,但是在实际应用开发中,应用会根据开发需要,封装自己的数据模型。对于多层嵌套的情况,比如二维数组,或者数…...
x-cmd pkg | jless - 受 Vim 启发的命令行 JSON 查看器
目录 简介首次用户功能特点类似工具与竞品进一步探索 简介 jless 是一个命令行 JSON 查看器,设计用于读取、探索和搜索 JSON 数据。可以使用它来替代 less 、 jq 、 cat 以及您当前用于查看 JSON 文件的编辑器的任何组合。它是用 Rust 编写的,可以作为单…...
【HuggingFace Transformer库学习笔记】基础组件学习:Datasets
基础组件——Datasets datasets基本使用 导入包 from datasets import *加载数据 datasets load_dataset("madao33/new-title-chinese") datasetsDatasetDict({train: Dataset({features: [title, content],num_rows: 5850})validation: Dataset({features: [titl…...
[机缘参悟-126] :实修 - 从系统论角度理解自洽的人生:和谐、稳定,不拧巴,不焦虑,不纠结
目录 一、从系统论理解自洽 1.1 什么是系统 1.2 什么是自洽 1.3 什么是不自洽 1.4 为什么要自洽 1.5 不自洽的系统面临的挑战 二、人生需要自洽 2.1 人生自洽的意义 2.2 一个不自洽的人生会怎么样? 2.3 不自洽的特征 2.4 不自洽的人没有稳定的人格 三、…...
基于大模型的 UI 自动化系统
基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...
stm32G473的flash模式是单bank还是双bank?
今天突然有人stm32G473的flash模式是单bank还是双bank?由于时间太久,我真忘记了。搜搜发现,还真有人和我一样。见下面的链接:https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...
python打卡day49
知识点回顾: 通道注意力模块复习空间注意力模块CBAM的定义 作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...
PHP和Node.js哪个更爽?
先说结论,rust完胜。 php:laravel,swoole,webman,最开始在苏宁的时候写了几年php,当时觉得php真的是世界上最好的语言,因为当初活在舒适圈里,不愿意跳出来,就好比当初活在…...
C++使用 new 来创建动态数组
问题: 不能使用变量定义数组大小 原因: 这是因为数组在内存中是连续存储的,编译器需要在编译阶段就确定数组的大小,以便正确地分配内存空间。如果允许使用变量来定义数组的大小,那么编译器就无法在编译时确定数组的大…...
嵌入式学习笔记DAY33(网络编程——TCP)
一、网络架构 C/S (client/server 客户端/服务器):由客户端和服务器端两个部分组成。客户端通常是用户使用的应用程序,负责提供用户界面和交互逻辑 ,接收用户输入,向服务器发送请求,并展示服务…...
站群服务器的应用场景都有哪些?
站群服务器主要是为了多个网站的托管和管理所设计的,可以通过集中管理和高效资源的分配,来支持多个独立的网站同时运行,让每一个网站都可以分配到独立的IP地址,避免出现IP关联的风险,用户还可以通过控制面板进行管理功…...
HybridVLA——让单一LLM同时具备扩散和自回归动作预测能力:训练时既扩散也回归,但推理时则扩散
前言 如上一篇文章《dexcap升级版之DexWild》中的前言部分所说,在叠衣服的过程中,我会带着团队对比各种模型、方法、策略,毕竟针对各个场景始终寻找更优的解决方案,是我个人和我司「七月在线」的职责之一 且个人认为,…...
【UE5 C++】通过文件对话框获取选择文件的路径
目录 效果 步骤 源码 效果 步骤 1. 在“xxx.Build.cs”中添加需要使用的模块 ,这里主要使用“DesktopPlatform”模块 2. 添加后闭UE编辑器,右键点击 .uproject 文件,选择 "Generate Visual Studio project files",重…...
rknn toolkit2搭建和推理
安装Miniconda Miniconda - Anaconda Miniconda 选择一个 新的 版本 ,不用和RKNN的python版本保持一致 使用 ./xxx.sh进行安装 下面配置一下载源 # 清华大学源(最常用) conda config --add channels https://mirrors.tuna.tsinghua.edu.cn…...
