当前位置: 首页 > news >正文

CMake Error at CMakeLists.txt:14 (project): The CMAKE_CXX_COMPILER:

  • 报错
CMake Error at CMakeLists.txt:14 (project):The CMAKE_CXX_COMPILER:arm-none-eabi-g++
  •  解决办法1

Arm GNU Toolchain Downloads – Arm Developer

x86_64 linux上:

x86_64 Linux hosted cross toolchains
AArch32 bare-metal target (arm-none-eabi)arm-gnu-toolchain-13.2.rel1-x86_64-arm-none-eabi.tar.xz

解压后,再配置一下PATH。 

  • 解决办法2
sudo apt install -y gcc-arm-none-eabi

相关文章:

CMake Error at CMakeLists.txt:14 (project): The CMAKE_CXX_COMPILER:

报错 CMake Error at CMakeLists.txt:14 (project):The CMAKE_CXX_COMPILER:arm-none-eabi-g 解决办法1 Arm GNU Toolchain Downloads – Arm Developer x86_64 linux上: x86_64 Linux hosted cross toolchains AArch32 bare-metal target (arm-none-eabi)arm-g…...

Sqoop与其他数据采集工具的比较分析

比较Sqoop与其他数据采集工具是一个重要的话题,因为不同的工具在不同的情况下可能更适合。在本博客文章中,将深入比较Sqoop与其他数据采集工具,提供详细的示例代码和全面的内容,以帮助大家更好地了解它们之间的差异和优劣势。 Sq…...

Pandas实战100例 | 案例 31: 转换为分类数据

案例 31: 转换为分类数据 知识点讲解 在处理包含文本数据的 DataFrame 时,将文本列转换为分类数据类型通常是一个好主意。这可以提高性能并节省内存。Pandas 允许将列转换为 category 类型。 分类数据类型: category 类型适用于那些只包含有限数量不同值的列&…...

椋鸟C语言笔记#33:文件的顺序读写

萌新的学习笔记,写错了恳请斧正。 目录 光标(文件位置指示器) 文件的顺序读写 fgetc 使用实例 fputc 使用实例 fgets fputs 使用实例 fscanf fprintf fread fwrite 使用实例 光标(文件位置指示器) 我们…...

Transformer - Attention is all you need 论文阅读

虽然是跑路来NLP,但是还是立flag说要做个project,结果kaggle上的入门project给的例子用的是BERT,还提到这一方法属于transformer,所以大概率读完这一篇之后,会再看BERT的论文这个样子。 在李宏毅的NLP课程中多次提到了…...

安装配置Flink

安装配置Flink 1.上传安装包到Linux 2.解压到指定路径 tar -zxf ./flink-1.14.0-bin-scala_2.12.tgz /usr/local/src/3.修改环境变量 vi ~/.bashrc#往最后加入 export FLINK_HOME /usr/local/src/flink-1.14.0/ export PATH$PATH:$FLINK_HOME/bin#激活环境变量 source ~/.…...

解决Spss没有创建虚拟变量的选项的问题

这个是今天用spss想创建虚拟变量然后发现我的spss没有。 然后能怎么办我就百度呗, 说是在扩展里连接扩展中心 天哪,谁能连上,我连不上 于是就找到了从github上下载到本地,然后安装到spss中 目录 解决方法 点击code 再点击D…...

wxWidgets实战:使用mpWindow绘制阻抗曲线

选择模型时,需要查看model的谐振频率,因此需要根据s2p文件绘制一张阻抗曲线。 如下图所示: mpWindow 左侧使用mpWindow,右侧使用什么? wxFreeChart https://forums.wxwidgets.org/viewtopic.php?t44928 https://…...

深度学习15—(迁移学习)冻结和解冻神经网络模型的参数

冻结与解冻代码: def freeze_net(net):if not net:returnfor p in net.parameters():p.requires_grad Falsedef unfreeze_net(net):if not net:returnfor p in net.parameters():p.requires_grad True 这段代码定义了两个函数:freeze_net 和 unfree…...

强化学习应用(八):基于Q-learning的无人机物流路径规划研究(提供Python代码)

一、Q-learning简介 Q-learning是一种强化学习算法,用于解决基于马尔可夫决策过程(MDP)的问题。它通过学习一个价值函数来指导智能体在环境中做出决策,以最大化累积奖励。 Q-learning算法的核心思想是通过不断更新一个称为Q值的…...

常见面试题之HTML

行内元素有哪些&#xff1f;块级元素有哪些&#xff1f; 空(void)元素有那些&#xff1f; HTML 中的行内元素&#xff08;inline elements&#xff09;通常用于在一行内显示&#xff0c;不会独占一行的空间。常见的行内元素有&#xff1a; <span>&#xff1a;用于对文本…...

数据结构与算法教程,数据结构C语言版教程!(第三部分、栈(Stack)和队列(Queue)详解)六

第三部分、栈(Stack)和队列(Queue)详解 栈和队列&#xff0c;严格意义上来说&#xff0c;也属于线性表&#xff0c;因为它们也都用于存储逻辑关系为 "一对一" 的数据&#xff0c;但由于它们比较特殊&#xff0c;因此将其单独作为一章&#xff0c;做重点讲解。 使用栈…...

使用Docker部署PDF多功能工具Stirling-PDF

1.服务器上安装docker 安装比较简单&#xff0c;这种安装的Docker不是最新版本&#xff0c;不过对于学习够用了&#xff0c;依次执行下面命令进行安装。 sudo apt install docker.io sudo systemctl start docker sudo systemctl enable docker 查看是否安装成功 $ docker …...

linux安装系统遇到的问题

这两天打算攻克下来网络编程&#xff0c;发现这也确实是很重要的一个东西&#xff0c;但我就奇了怪了&#xff0c;老师就压根没提&#xff0c;反正留在我印象的就一个tcp/ip七层网络。也说正好&#xff0c;把linux命令也熟悉熟悉&#xff0c;拿着我大一课本快速过过 连接cento…...

groovy XmlParser 递归遍历 xml 文件,修改并保存

使用 groovy.util.XmlParser 解析 xml 文件&#xff0c;对文件进行修改&#xff08;新增标签&#xff09;&#xff0c;然后保存。 是不是 XmlParser 没有提供方法遍历每个节点&#xff0c;难道要自己写&#xff1f; 什么是递归&#xff1f; 不用说&#xff0c;想必都懂得~ …...

小程序基础学习(多插槽)

先创建插槽 定义多插槽的每一个插槽的属性 在js文件中启用多插槽 在页面使用多插槽 组件代码 <!--components/my-slots/my-slots.wxml--><view class"container"><view class"left"> <slot name"left" ></slot>&…...

爬虫补环境jsdom、proxy、Selenium案例:某条

声明&#xff1a; 该文章为学习使用&#xff0c;严禁用于商业用途和非法用途&#xff0c;违者后果自负&#xff0c;由此产生的一切后果均与作者无关 一、简介 爬虫逆向补环境的目的是为了模拟正常用户的行为&#xff0c;使爬虫看起来更像是一个真实的用户在浏览网站。这样可以…...

电子学会C/C++编程等级考试2021年09月(四级)真题解析

C/C++编程(1~8级)全部真题・点这里 第1题:最佳路径 如下所示的由正整数数字构成的三角形: 7 3 8 8 1 0 2 7 4 4 4 5 2 6 5 从三角形的顶部到底部有很多条不同的路径。对于每条路径,把路径上面的数加起来可以得到一个和,和最大的路径称为最佳路径。你的任务就是求出最佳路径…...

DevExpress历史安装文件包集合

Components - DevExpress.NET组件安装包此安装程序包括所有 .NET Framework、.NET Core 3 和 .NET 5、ASP.NET Core 和 HTML/JavaScript 组件和库&#xff08;Web和桌面应用程序开发只需要安装此文件即可&#xff09;。 注意&#xff1a;自DevExpress21.1版本之后&#xff0c;该…...

科技云报道:“存算一体”是大模型AI芯片的破局关键?

科技云报道原创。 在AI发展历史上&#xff0c;曾有两次“圣杯时刻”。 第一次发生在2012年10月&#xff0c;卷积神经网络&#xff08;CNN&#xff09;算法凭借比人眼识别更低的错误率&#xff0c;打开了计算机视觉的应用盛世。 第二次是2016年3月&#xff0c;DeepMind研发的…...

练习(含atoi的模拟实现,自定义类型等练习)

一、结构体大小的计算及位段 &#xff08;结构体大小计算及位段 详解请看&#xff1a;自定义类型&#xff1a;结构体进阶-CSDN博客&#xff09; 1.在32位系统环境&#xff0c;编译选项为4字节对齐&#xff0c;那么sizeof(A)和sizeof(B)是多少&#xff1f; #pragma pack(4)st…...

转转集团旗下首家二手多品类循环仓店“超级转转”开业

6月9日&#xff0c;国内领先的循环经济企业转转集团旗下首家二手多品类循环仓店“超级转转”正式开业。 转转集团创始人兼CEO黄炜、转转循环时尚发起人朱珠、转转集团COO兼红布林CEO胡伟琨、王府井集团副总裁祝捷等出席了开业剪彩仪式。 据「TMT星球」了解&#xff0c;“超级…...

如何在最短时间内提升打ctf(web)的水平?

刚刚刷完2遍 bugku 的 web 题&#xff0c;前来答题。 每个人对刷题理解是不同&#xff0c;有的人是看了writeup就等于刷了&#xff0c;有的人是收藏了writeup就等于刷了&#xff0c;有的人是跟着writeup做了一遍就等于刷了&#xff0c;还有的人是独立思考做了一遍就等于刷了。…...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域&#xff0c;向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能&#xff0c;能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作&#xff0c;并通过具体…...

视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)

前言&#xff1a; 最近在做行为检测相关的模型&#xff0c;用的是时空图卷积网络&#xff08;STGCN&#xff09;&#xff0c;但原有kinetic-400数据集数据质量较低&#xff0c;需要进行细粒度的标注&#xff0c;同时粗略搜了下已有开源工具基本都集中于图像分割这块&#xff0c…...

Unity UGUI Button事件流程

场景结构 测试代码 public class TestBtn : MonoBehaviour {void Start(){var btn GetComponent<Button>();btn.onClick.AddListener(OnClick);}private void OnClick(){Debug.Log("666");}}当添加事件时 // 实例化一个ButtonClickedEvent的事件 [Formerl…...

深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏

一、引言 在深度学习中&#xff0c;我们训练出的神经网络往往非常庞大&#xff08;比如像 ResNet、YOLOv8、Vision Transformer&#xff09;&#xff0c;虽然精度很高&#xff0c;但“太重”了&#xff0c;运行起来很慢&#xff0c;占用内存大&#xff0c;不适合部署到手机、摄…...

HTML前端开发:JavaScript 获取元素方法详解

作为前端开发者&#xff0c;高效获取 DOM 元素是必备技能。以下是 JS 中核心的获取元素方法&#xff0c;分为两大系列&#xff1a; 一、getElementBy... 系列 传统方法&#xff0c;直接通过 DOM 接口访问&#xff0c;返回动态集合&#xff08;元素变化会实时更新&#xff09;。…...

Linux-进程间的通信

1、IPC&#xff1a; Inter Process Communication&#xff08;进程间通信&#xff09;&#xff1a; 由于每个进程在操作系统中有独立的地址空间&#xff0c;它们不能像线程那样直接访问彼此的内存&#xff0c;所以必须通过某种方式进行通信。 常见的 IPC 方式包括&#…...

用js实现常见排序算法

以下是几种常见排序算法的 JS实现&#xff0c;包括选择排序、冒泡排序、插入排序、快速排序和归并排序&#xff0c;以及每种算法的特点和复杂度分析 1. 选择排序&#xff08;Selection Sort&#xff09; 核心思想&#xff1a;每次从未排序部分选择最小元素&#xff0c;与未排…...