算法学习系列(二十二):最短路问题
目录
- 引言
- 一、最短路问题
- 二、朴素Dijkstra算法
- 三、堆优化版的Dijkstra算法
- 四、Bellman-Ford算法
- 五、SPFA算法
- 六、Floyd算法
引言
这个最短路问题可以说是图论当中的基础问题,不管你干什么只要涉及图论中的问题的话,最短路问题都是你不可避免的,不论是在算法竞赛、考研、面试都是非常重要的,本文介绍了Dijkstra算法、堆优化版的Dijkstra算法、Bellman-Ford算法、SPFA算法、Floyd算法的思想以及例题,并且介绍了在什么情况下用什么算法话不多说,直接开干。
一、最短路问题
这张图涵盖了所有的最短路问题,接下来就一一介绍啦!
单源:一个起点,多源:多个起点
二、朴素Dijkstra算法
思想:先找到一个点到起点的最短距离,然后再看能不能通过这个点更新其它点到起点的距离,然后再找到另一个点到起点的最短距离,再次更新,直至更新至终点
题目描述:
给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环,所有边权均为正值。请你求出 1 号点到 n号点的最短距离,如果无法从 1 号点走到 n 号点,则输出 −1。输入格式
第一行包含整数 n 和 m。
接下来 m 行每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。输出格式
输出一个整数,表示 1 号点到 n 号点的最短距离。
如果路径不存在,则输出 −1。数据范围
1≤n≤500,1≤m≤105,图中涉及边长均不超过10000。输入样例:
3 3
1 2 2
2 3 1
1 3 4
输出样例:
3
示例代码:
#include <cstdio>
#include <cstring>
#include <iostream>using namespace std;const int N = 510;int n, m;
int g[N][N]; //稠密图采用邻接矩阵存储方式
int dist[N]; //代表起点到i号点的最短距离
bool st[N]; //当前已确定最短距离的点int dijkstra()
{memset(dist, 0x3f, sizeof dist);dist[1] = 0;for(int i = 0; i < n - 1; ++i){int t = -1;for(int j = 1; j <= n; ++j){if(!st[j] && (t == -1 || dist[t] > dist[j])) t = j;}for(int j = 1; j <= n; ++j) dist[j] = min(dist[j], dist[t] + g[t][j]);st[t] = true;}if(dist[n] == 0x3f3f3f3f) return -1;return dist[n];
}int main()
{scanf("%d%d", &n, &m);memset(g, 0x3f, sizeof g);while(m--){int a, b, c;scanf("%d%d%d", &a, &b, &c);g[a][b] = min(g[a][b], c);}printf("%d\n", dijkstra());return 0;
}
三、堆优化版的Dijkstra算法
这个堆优化版本的就是把找最短距离的边换成堆来优化就行了,把边全部加到堆中,然后每次取堆顶就行了
题目描述:
给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环,所有边权均为非负值。请你求出 1 号点到 n 号点的最短距离,如果无法从 1 号点走到 n 号点,则输出 −1。输入格式
第一行包含整数 n 和 m。
接下来 m 行每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。输出格式
输出一个整数,表示 1 号点到 n 号点的最短距离。
如果路径不存在,则输出 −1。数据范围
1≤n,m≤1.5×105,图中涉及边长均不小于 0,且不超过 10000。
数据保证:如果最短路存在,则最短路的长度不超过 109。输入样例:
3 3
1 2 2
2 3 1
1 3 4
输出样例:
3
示例代码:
#include <cstdio>
#include <cstring>
#include <iostream>
#include <queue>using namespace std;typedef pair<int,int> PII; //存的是权重, 结点编号const int N = 2e5+10;int n, m;
int h[N], e[N], w[N], ne[N], idx; //因为是稀疏图用邻接表
int dist[N];
bool st[N];void add(int a, int b, int c)
{e[idx] = b, w[idx] = c; ne[idx] = h[a], h[a] = idx++;
}int dijkstra()
{memset(dist, 0x3f, sizeof dist);dist[1] = 0;priority_queue<PII, vector<PII>, greater<PII>> heap; //初始化小根堆heap.push({0,1});while(heap.size()){auto t = heap.top(); heap.pop();int ver = t.second, distance = t.first;if(st[ver]) continue;st[ver] = true;for(int i = h[ver]; i != -1; i = ne[i]){int j = e[i];if(dist[j] > distance + w[i]){dist[j] = distance + w[i];heap.push({dist[j], j});}}}if(dist[n] == 0x3f3f3f3f) return -1;return dist[n];
}int main()
{memset(h, -1, sizeof h);scanf("%d%d", &n, &m);while(m--){int a, b, c;scanf("%d%d%d", &a, &b, &c);add(a, b, c);}printf("%d\n",dijkstra());return 0;
}
四、Bellman-Ford算法
思想:通过遍历k次,每次都遍历所有边更新所有边
题目描述:
给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环, 边权可能为负数。请你求出从 1 号点到 n 号点的最多经过 k 条边的最短距离,如果无法从 1 号点走到 n 号点,输出 impossible。
注意:图中可能 存在负权回路 。输入格式
第一行包含三个整数 n,m,k。
接下来 m 行,每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。点的编号为 1∼n。输出格式
输出一个整数,表示从 1 号点到 n 号点的最多经过 k 条边的最短距离。
如果不存在满足条件的路径,则输出 impossible。数据范围
1≤n,k≤500,1≤m≤10000,1≤x,y≤n,
任意边长的绝对值不超过 10000。输入样例:
3 3 1
1 2 1
2 3 1
1 3 3输出样例:
3
示例代码:
#include <cstdio>
#include <cstring>
#include <iostream>using namespace std;const int N = 510, M = 10010;int n, m, k;
int dist[N], backup[N];struct Edge
{int a, b, c;
}edges[M];void bellman_ford()
{memset(dist, 0x3f, sizeof dist);dist[1] = 0;for(int i = 0; i < k; ++i){memcpy(backup, dist, sizeof dist); //防止串行赋值导致超出k次for(int j = 0; j < m; ++j){auto e = edges[j];dist[e.b] = min(dist[e.b], backup[e.a] + e.c); //每次只会通过一个顶点更新边}}
}int main()
{scanf("%d%d%d", &n, &m, &k);for(int i = 0; i < m; ++i){int a, b, c;scanf("%d%d%d", &a, &b, &c);edges[i] = {a,b,c};}bellman_ford();if(dist[n] > 0x3f3f3f3f / 2) puts("impossible"); //因为更新边要是INF+ -1 也是INF, 但不是0x3f3f3f3f了else printf("%d\n", dist[n]);return 0;
}
五、SPFA算法
思想:把第一个点加入队列中,然后用这个点更新与之相连的点,然后把更新的点加入队列中,把之前的点取出队列
题目描述:
给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环, 边权可能为负数。
请你求出 1 号点到 n 号点的最短距离,如果无法从 1 号点走到 n 号点,则输出 impossible。
数据保证不存在负权回路。输入格式
第一行包含整数 n 和 m。
接下来 m 行每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。输出格式
输出一个整数,表示 1 号点到 n 号点的最短距离。
如果路径不存在,则输出 impossible。数据范围
1≤n,m≤105,图中涉及边长绝对值均不超过 10000。输入样例:
3 3
1 2 5
2 3 -3
1 3 4
输出样例:
2
示例代码:
#include <cstdio>
#include <cstring>
#include <iostream>using namespace std;const int N = 1e5+10;int n, m;
int h[N], e[N], w[N], ne[N], idx;
int dist[N], q[N];
bool st[N];void add(int a, int b, int c)
{e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx++;
}int spfa()
{memset(dist, 0x3f, sizeof dist);dist[1] = 0;st[1] = true;int hh = 0, tt = -1;q[++tt] = 1;while(hh <= tt){auto t = q[hh++];st[t] = false;for(int i = h[t]; i != -1; i = ne[i]){int j = e[i];if(dist[j] > dist[t] + w[i]){dist[j] = dist[t] + w[i];if(!st[j]){q[++tt] = j;st[j] = true;}}}}return dist[n];
}int main()
{memset(h, -1, sizeof h);scanf("%d%d", &n, &m);while(m--){int a, b, c;scanf("%d%d%d", &a, &b, &c);add(a, b, c);}int t = spfa();if(t == 0x3f3f3f3f) puts("impossible");else printf("%d\n", t);return 0;
}
六、Floyd算法
这个算法基于动态规划,dist[i][j] 刚开始跟g[i][b]一样,之后就变成了i - j 的最短距离
//dist(k, i, j) 代表从i - j 能经过 1 - k 个点的最短距离
dist(k, i, j) = dist(k-1, i, k) + dist(k-1, k, j)
题目描述:
给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环,边权可能为负数。
再给定 k 个询问,每个询问包含两个整数 x 和 y,表示查询从点 x 到点 y的最短距离,如果路径不存在,则输出 impossible。
数据保证图中不存在负权回路。输入格式
第一行包含三个整数 n,m,k。
接下来 m 行,每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。
接下来 k 行,每行包含两个整数 x,y,表示询问点 x 到点 y 的最短距离。输出格式
共 k 行,每行输出一个整数,表示询问的结果,若询问两点间不存在路径,则输出 impossible。
数据范围
1≤n≤200,1≤k≤n21≤m≤20000,图中涉及边长绝对值均不超过 10000。输入样例:
3 3 2
1 2 1
2 3 2
1 3 1
2 1
1 3输出样例:
impossible
1
示例代码:
#include <cstdio>
#include <cstring>
#include <iostream>using namespace std;const int N = 210, INF = 1e9;int n, m, Q;
int dist[N][N];void floyd()
{for(int k = 1; k <= n; ++k)for(int i = 1; i <= n; ++i)for(int j = 1; j <= n; ++j)dist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j]);
}int main()
{scanf("%d%d%d", &n, &m, &Q);for(int i = 1; i <= n; ++i){for(int j = 1; j <= n; ++j){if(i == j) dist[i][j] = 0;else dist[i][j] = INF;}}while(m--){int a, b, c;scanf("%d%d%d", &a, &b, &c);dist[a][b] = min(dist[a][b], c);}floyd();while(Q--){int a, b;scanf("%d%d", &a, &b);if(dist[a][b] > INF / 2) puts("impossible");else printf("%d\n", dist[a][b]);}return 0;
}
相关文章:

算法学习系列(二十二):最短路问题
目录 引言一、最短路问题二、朴素Dijkstra算法三、堆优化版的Dijkstra算法四、Bellman-Ford算法五、SPFA算法六、Floyd算法 引言 这个最短路问题可以说是图论当中的基础问题,不管你干什么只要涉及图论中的问题的话,最短路问题都是你不可避免的ÿ…...

【Spring Boot】SpringMVC入门
1.什么是springMVC MVC就是把一个项目分成了三部分: MVC是一种思想。Spring进行了实现,称为Spring MVC。SpringBoot是创建SpringMVC项目的一种方式而已。springMVC对于MVC做出了一些改变: 当前阶段,MVC的概念又发生了一些变化,后端开发人员不涉及前端页…...
itextpdf 之 html 转 pdf 问题处理
1. Font Provider contains zero fonts. At least one font shall be present 此问题出现的原因是 字体设置不成功,解决方法就是排查设置字体的代码。 需要特别注意的是项目打包后项目中所有文件层次会出现变动,使用何种方式获取字体文件会直接影响到字…...

关于tex中的表格设置
文章目录 控制表格列宽和行高控制表格列宽的同时实现居中tex中多表格排列单元格的合并与分割对单个单元格进行操作 控制表格列宽和行高 将下面的代码放在table环境内,放在tabular环境外 调整表格宽度和高度: \resizebox{\textwidth}{2cm}{%第一个{}是表…...

huggingface学习 | 云服务器使用git-lfs下载huggingface上的模型文件
文章目录 一、找到需要下载的huggingface文件二、准备工作(一)安装git-lfs(二) 配置git ssh 三、检查ssh连接huggingface是否成功 一、找到需要下载的huggingface文件 huggingface官网链接:https://huggingface.co/ 以…...
使用C++读取SQL Server数据库中的数据并转换为UNICODE类型
要使用C读取SQL Server数据库中的数据并转换为UNICODE类型,可以使用ODBC库和UNICODE编码函数。 首先,确保已安装SQL Server的ODBC驱动程序,并在项目中包含ODBC头文件<sql.h>和<sqlext.h>。 接下来,可以按照以下步骤进…...

WPF应用程序生存期以及相关事件
WPF 应用程序的生存期会通过 Application 引发的几个事件来加以标记,相关事件对应着应用程序何时启动、激活、停用和关闭。 应用程序生存期事件 • 独立应用程序(传统风格的 Windows 应用程序,这些应用程序作为要安装到客户端计算机并从客户端计算机运…...

【Git】任何位置查看git日志
需求 现需要查看指定项目中的某个文件的 Git 日志。如有 项目代码 jflowable ,需要查看其下文件 D:\z_workspace\jflowable\src\main\java\com\xzbd\jflowable\controller\TestController.java 的日志。 分析 一般的思路是,进入 jflowable 项目&#…...
Socket通讯使用的坑-消息合并发送-解决方法
关联文章 Socket通讯使用的坑-消息合并发送-CSDN博客 解决方法 /// <summary> /// 公共方法 /// </summary> public static class CommonMethods {/// <summary>/// 多个JSON对象字符串转成JSON字符串列表/// </summary>/// <param name"j…...

【Linux】基本指令
Hello everbody!这次咱们紧接着上一篇文章,继续介绍Linux操作系统的一些基本指令。这些指令是入门级别的,比较基础的。相当于windows中文件的复制,重命名,创建文件,创建目录之类的,还有如何在Linux中写c语言…...
JS中数组的相关方法介绍
push() 将一个或多个元素添加到数组的末尾,并返回新的长度。 let arr [1, 2, 3]; arr.push(4); // arr 现在是 [1, 2, 3, 4] pop() 删除并返回数组的最后一个元素 let arr [1, 2, 3, 4]; let last arr.pop(); // last 现在是 4,arr 现在是 [1, …...
mybtis动态SQL注解 脚本动态SQL\方法中构建SQL\SQL语句构造器
mybtis动态SQL注解 动态SQL注解脚本动态SQL方法中构建SQLSQL语句构造器 动态SQL注解 分类: 脚本动态SQL:XML配置方式的动态SQL,是用<script>的方式把它照搬过来,用注解来实现。适用于xml配置转换到注解配置方法中构建SQL&…...

TikTok电商加快闭环,独享IP为运营带来哪些好处?
近日有消息称TikTok电商在加快闭环,以后商家可能无法继续在TikTok上为其他电商平台或独立站引流了。如今“TikTok Shop Shopping Center”平台正在构建,将各种购物渠道整合为一体,这可能是一种趋势,意味着TikTok逐渐从社交应用转型…...

LaTeX系列4——列表
无序列表 \documentclass[UTF-8]{ctexart}\begin{document} \begin{itemize}\item{列表项1}\item{列表项2}\item{列表项3} \end{itemize} \end{document} 有序列表 \documentclass[UTF-8]{ctexart}\begin{document} \begin{enumerate}\item{列表项1}\item{列表项2}\item{列表…...

JNI笔记
JNI笔记 背景Demo代码JNI.javaMainActivity.javaAndroid.mkApplication.mkcom_stone_javacallc_JNI.hjavacallc.cbuild.gradle 背景 Demo代码 代码结构 JNI.java package com.stone.javacallc;/*** Created by stoneWang* Created on 2024/1/16* java调用C*/ public class …...
使用nginx的proxy_cache实现静态资源的缓存
nginx的版本 ./nginx -v nginx version: nginx/1.9.15需求 要求nginx缓存静态资源,如js、css、图片等,避免对静态资源的访问直接穿透到后端的j2ee应用侧,提高后端j2ee应用的运行效率。 配置方法 针对js、css、图片文件 分别增加缓存路径的…...
【Golang】Perl 正则表达式语法的支持示例
背景 在 Golang 中,标准库的正则表达式包 regexp 是基于 RE2 语法的,并不直接支持 Perl 正则表达式的全部功能。虽然 Golang 的标准库并不直接提供对 Perl 正则表达式的支持,但是您可以使用第三方库来实现与 Perl 兼容的正则表达式功能。 一…...
手写一个std::function
前言 在《std::function从实践到原理》中我们分析了std::function的实现原理,但这只是纸上谈兵。要想理解为什么这么实现,最好的办法还是想想要是自己手写一个要怎么实现。本文不想直接呈现最终版本,因为那样读者看不到某段代码是为了什么才…...
04--MySQL函数的使用
1、SQL函数的使用 当我们学习编程语言的时候,经常会遇到函数。函数的好处是,它可以把我们经常使用的代码封装起来,需要的时候直接调用即可。这样既提高了编写代码的效率,又提高了可维护性。在SQL中函数主要要对数据进行处理&…...

imgaug库指南(28):从入门到精通的【图像增强】之旅(万字长文)
引言 在深度学习和计算机视觉的世界里,数据是模型训练的基石,其质量与数量直接影响着模型的性能。然而,获取大量高质量的标注数据往往需要耗费大量的时间和资源。正因如此,数据增强技术应运而生,成为了解决这一问题的…...
生成xcframework
打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式,可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...
应用升级/灾备测试时使用guarantee 闪回点迅速回退
1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间, 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点,不需要开启数据库闪回。…...
进程地址空间(比特课总结)
一、进程地址空间 1. 环境变量 1 )⽤户级环境变量与系统级环境变量 全局属性:环境变量具有全局属性,会被⼦进程继承。例如当bash启动⼦进程时,环 境变量会⾃动传递给⼦进程。 本地变量限制:本地变量只在当前进程(ba…...

Xshell远程连接Kali(默认 | 私钥)Note版
前言:xshell远程连接,私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...
Linux简单的操作
ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...
Java多线程实现之Callable接口深度解析
Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...

华硕a豆14 Air香氛版,美学与科技的馨香融合
在快节奏的现代生活中,我们渴望一个能激发创想、愉悦感官的工作与生活伙伴,它不仅是冰冷的科技工具,更能触动我们内心深处的细腻情感。正是在这样的期许下,华硕a豆14 Air香氛版翩然而至,它以一种前所未有的方式&#x…...

算法:模拟
1.替换所有的问号 1576. 替换所有的问号 - 力扣(LeetCode) 遍历字符串:通过外层循环逐一检查每个字符。遇到 ? 时处理: 内层循环遍历小写字母(a 到 z)。对每个字母检查是否满足: 与…...
深入理解Optional:处理空指针异常
1. 使用Optional处理可能为空的集合 在Java开发中,集合判空是一个常见但容易出错的场景。传统方式虽然可行,但存在一些潜在问题: // 传统判空方式 if (!CollectionUtils.isEmpty(userInfoList)) {for (UserInfo userInfo : userInfoList) {…...

Visual Studio Code 扩展
Visual Studio Code 扩展 change-case 大小写转换EmmyLua for VSCode 调试插件Bookmarks 书签 change-case 大小写转换 https://marketplace.visualstudio.com/items?itemNamewmaurer.change-case 选中单词后,命令 changeCase.commands 可预览转换效果 EmmyLua…...